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Preface

Kubernetes: A Dedication

Kubernetes would like to thank every sysadmin who has woken up at 3 a.m. to
restart a process. Every developer who pushed code to production only to find that it
didn’t run like it did on their laptop. Every systems architect who mistakenly pointed
a load test at the production service because of a leftover hostname that they hadn’t
updated. It was the pain, the weird hours, and the weird errors that inspired the
development of Kubernetes. In a single sentence: Kubernetes intends to radically
simplify the task of building, deploying, and maintaining distributed systems. It has
been inspired by decades of real-world experience building reliable systems and it
has been designed from the ground up to make that experience, if not euphoric, at
least pleasant. We hope you enjoy the book!

Who Should Read This Book

Whether you are new to distributed systems or have been deploying cloud-native
systems for years, containers and Kubernetes can help you achieve new levels of
velocity, agility, reliability, and efficiency. This book describes the Kubernetes
cluster orchestrator and how its tools and APIs can be used to improve the
development, delivery, and maintenance of distributed applications. Though no
previous experience with Kubernetes is assumed, to make maximal use of the book
you should be comfortable building and deploying server-based applications.
Familiarity with concepts like load balancers and network storage will be useful,
though not required. Likewise, experience with Linux, Linux containers, and
Docker, though not essential, will help you make the most of this book.

Why We Wrote This Book

We have been involved with Kubernetes since its very beginnings. It has been truly
remarkable to watch it transform from a curiosity largely used in experiments to a
crucial production-grade infrastructure that powers large-scale production
applications in varied fields, from machine learning to online services. As this



transition occurred, it became increasingly clear that a book that captured both how
to use the core concepts in Kubernetes and the motivations behind the development
of those concepts would be an important contribution to the state of cloud-native
application development. We hope that in reading this book, you not only learn how
to build reliable, scalable applications on top of Kubernetes, but also that you receive
insight into the core challenges of distributed systems that led to its development.

A Word on Cloud-Native Applications Today

From the first programming languages, to object-oriented programming, to the
development of virtualization and cloud infrastructure, the history of computer
science is a history of the development of abstractions that hide complexity and
empower you to build ever more sophisticated applications. Despite this, the
development of reliable, scalable applications is still dramatically more challenging
than it ought to be. In recent years, containers and container orchestration APIs like
Kubernetes have become an important abstraction that radically simplifies the
development of reliable, scalable distributed systems. Though containers and
orchestrators are still in the process of entering the mainstream, they are already
enabling developers to build and deploy applications with a speed, agility, and
reliability that would have seemed like science fiction only a few years ago.

Navigating This Book

This book is organized as follows. The first chapter outlines the high-level benefits
of Kubernetes without diving too deeply into the details. If you are new to
Kubernetes, this is a great place to start to understand why you should read the rest
of the book.

The following chapter provides a detailed introduction to containers and
containerized application development. If you’ve never really played around with
Docker before, this chapter will be a useful introduction. If you are already a Docker
expert, it will likely be mostly review.

Chapter 3 covers how to deploy Kubernetes. While most of this book focuses on
how to use Kubernetes, you need to get a cluster up and running before you start
using it. While running a cluster for production is out of the scope of this book, this
chapter presents a couple of easy ways to create a cluster so that you can understand



how to use Kubernetes.

Starting with Chapter 5, we dive into the details of deploying an application using
Kubernetes. We cover Pods (Chapter 5), labels and annotations (Chapter 6), services
(Chapter 7), and ReplicaSets (Chapter 8). These form the core basics of what you
need to deploy your service in Kubernetes.

After those chapters, we cover some more specialized objects in Kubernetes:
DaemonSets (Chapter 9), jobs (Chapter 10), and ConfigMaps and secrets

(Chapter 11). While these chapters are essential for many production applications, if
you are just learning Kubernetes they can be skipped and returned to later, after you
gain more experience and expertise.

We then cover deployments (Chapter 12), which tie together the lifecycle of a
complete application, and integrating storage into Kubernetes (Chapter 13). Finally,
we conclude with some examples of how to develop and deploy real-world
applications in Kubernetes.

Online Resources

You will want to install Docker. You likely will also want to familiarize yourself
with the Docker documentation if you have not already done so.

Likewise, you will want to install the kubectl command-line tool. You may also
want to join the Kubernetes slack channel, where you will find a large community of
users who are willing to talk and answer questions at nearly any hour of the day.

Finally, as you grow more advanced, you may want to engage with the open source
Kubernetes repository on GitHub.

Conventions Used in This Book

The following typographical conventions are used in this book:
Italic

Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program


https://docker.com
https://kubernetes.io
http://slack.kubernetes.io
https://github.com/kubernetes/kubernetes

elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

NOTE

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https.//github.com/kubernetes-up-and-running/examples.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You do
not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Kubernetes: Up and Running by
Kelsey Hightower, Brendan Burns, and Joe Beda (O’Reilly). Copyright 2017 Kelsey
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Hightower, Brendan Burns, and Joe Beda, 978-1-491-93567-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’'Reilly Safari

Safari (formerly Safari Books Online) i1s a membership-based training and reference
platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-
Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http.//oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/kubernetes-up-and-running.
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To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at Attp://www.oreilly.com.

Find us on Facebook: Attp://facebook.com/oreilly
Follow us on Twitter: http.//twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Introduction

Kubernetes is an open source orchestrator for deploying containerized applications.
Kubernetes was originally developed by Google, inspired by a decade of experience
deploying scalable, reliable systems in containers via application-oriented APIs.!

But Kubernetes 1s much more than simply exporting technology developed at
Google. Kubernetes has grown to be the product of a rich and growing open source
community. This means that Kubernetes is a product that is suited not just to the
needs of internet-scale companies but to cloud-native developers of all scales, from a
cluster of Raspberry P1 computers to a warehouse full of the latest machines.
Kubernetes provides the software necessary to successfully build and deploy
reliable, scalable distributed systems.

You may be wondering what we mean when we say “reliable, scalable distributed
systems.” More and more services are delivered over the network via APIs. These
APIs are often delivered by a distributed system, the various pieces that implement
the API running on different machines, connected via the network and coordinating
their actions via network communication. Because we rely on these APIs
increasingly for all aspects of our daily lives (e.g., finding directions to the nearest
hospital), these systems must be highly reliable. They cannot fail, even if a part of
the system crashes or otherwise fails. Likewise, they must maintain availability even
during software rollouts or other maintenance events. Finally, because more and
more of the world is coming online and using such services, they must be highly
scalable so that they can grow their capacity to keep up with ever-increasing usage
without radical redesign of the distributed system that implements the services.

Depending on when and why you have come to hold this book in your hands, you
may have varying degrees of experience with containers, distributed systems, and
Kubernetes. Regardless of what your experience is, we believe this book will enable
you to make the most of your use of Kubernetes.

There are many reasons why people come to use containers and container APIs like
Kubernetes, but we believe they effectively all can be traced back to one of these
benefits:

e Velocity



e Scaling (of both software and teams)
e Abstracting your infrastructure

e Efficiency

In the following sections we describe how Kubernetes can help provide each of these
benefits.

Velocity

Velocity is the key component in nearly all software development today. The
changing nature of software from boxed software shipped on CDs to web-based
services that change every few hours means that the difference between you and
your competitors is often the speed with which you can develop and deploy new
components and features.

It is important to note, however, that this velocity is not defined in terms of simply
raw speed. While your users are always looking for iterative improvement, they are
more interested in a highly reliable service. Once upon a time, it was OK for a
service to be down for maintenance at midnight every night. But today, our users
expect constant uptime, even if the software they are running is changing constantly.

Consequently, velocity is measured not in terms of the raw number of features you
can ship per hour or day, but rather in terms of the number of things you can ship
while maintaining a highly available service.

In this way, containers and Kubernetes can provide the tools that you need to move
quickly, while staying available. The core concepts that enable this are immutability,
declarative configuration, and online self-healing systems. These ideas all interrelate
to radically improve the speed with which you can reliably deploy software.

The Value of Immutability

Containers and Kubernetes encourage developers to build distributed systems that
adhere to the principles of immutable infrastructure. With immutable infrastructure,
once an artifact is created in the system it does not change via user modifications.

Traditionally, computers and software systems have been treated as mutable
infrastructure. With mutable infrastructure, changes are applied as incremental



updates to an existing system. A system upgrade via the apt-get update toolis a
good example of an update to a mutable system. Running apt sequentially
downloads any updated binaries, copies them on top of older binaries, and makes
incremental updates to configuration files. With a mutable system, the current state
of the infrastructure is not represented as a single artifact, but rather an accumulation
of incremental updates and changes. On many systems these incremental updates
come from not just system upgrades but operator modifications as well.

In contrast, in an immutable system, rather than a series of incremental updates and
changes, an entirely new, complete image is built, where the update simply replaces
the entire image with the newer image in a single operation. There are no
incremental changes. As you can imagine, this is a significant shift from the more
traditional world of configuration management.

To make this more concrete in the world of containers, consider two different ways
to upgrade your software:

1. You can log into a container, run a command to download your new software, kill
the old server, and start the new one.

2. You can build a new container image, push it to a container registry, kill the
existing container, and start a new one.

At first blush, these two approaches might seem largely indistinguishable. So what is
it about the act of building a new container that improves reliability?

The key differentiation is the artifact that you create, and the record of how you
created it. These records make it easy to understand exactly the differences in some
new version and, if something goes wrong, determine what has changed and how to
fix it.

Additionally, building a new image rather than modifying an existing one means the
old image is still around, and can quickly be used for a rollback if an error occurs. In
contrast, once you copy your new binary over an existing binary, such rollback is
nearly impossible.

Immutable container images are at the core of everything that you will build in
Kubernetes. It is possible to imperatively change running containers, but this is an
antipattern to be used only in extreme cases where there are no other options (e.g., if
it is the only way to temporarily repair a mission-critical production system). And
even then, the changes must also be recorded through a declarative configuration



update at some later time, after the fire is out.

Declarative Configuration

Immutability extends beyond containers running in your cluster to the way you
describe your application to Kubernetes. Everything in Kubernetes is a declarative
configuration object that represents the desired state of the system. It is Kubernetes’s
job to ensure that the actual state of the world matches this desired state.

Much like mutable versus immutable infrastructure, declarative configuration is an
alternative to imperative configuration, where the state of the world is defined by the
execution of a series of instructions rather than a declaration of the desired state of
the world. While imperative commands define actions, declarative configurations
define state.

To understand these two approaches, consider the task of producing three replicas of
a piece of software. With an imperative approach, the configuration would say: “run
A, run B, and run C.” The corresponding declarative configuration would be
“replicas equals three.”

Because it describes the state of the world, declarative configuration does not have to
be executed to be understood. Its impact is concretely declared. Since the effects of
declarative configuration can be understood before they are executed, declarative
configuration is far less error-prone. Further, the traditional tools of software
development, such as source control, code review, and unit testing, can be used in
declarative configuration in ways that are impossible for imperative instructions.

The combination of declarative state stored in a version control system and
Kubernetes’s ability to make reality match this declarative state makes rollback of a
change trivially easy. It is simply restating the previous declarative state of the
system. With imperative systems this is usually impossible, since while the
imperative instructions describe how to get you from point 4 to point B, they rarely
include the reverse instructions that can get you back.

Self-Healing Systems

Kubernetes is an online, self-healing system. When it receives a desired state
configuration, it does not simply take actions to make the current state match the
desired state a single time. It continuously takes actions to ensure that the current



state matches the desired state. This means that not only will Kubernetes initialize
your system, but it will guard it against any failures or perturbations that might
destabilize your system and affect reliability.

A more traditional operator repair involves a manual series of mitigation steps, or
human intervention performed in response to some sort of alert. Imperative repair
like this is more expensive (since it generally requires an on-call operator to be
available to enact the repair). It is also generally slower, since a human must often
wake up and log in to respond. Furthermore, it is less reliable since the imperative
series of repair operations suffer from all of the problems of imperative management
described in the previous section. Self-healing systems like Kubernetes both reduce
the burden on operators and improve the overall reliability of the system by
performing reliable repairs more quickly.

As a concrete example of this self-healing behavior, if you assert a desired state of
three replicas to Kubernetes, it does not just create three replicas—it continuously
ensures that there are exactly three replicas. If you manually create a fourth replica
Kubernetes will destroy one to bring the number back to three. If you manually
destroy a replica, Kubernetes will create one to again return you to the desired state.

Online self-healing systems improve developer velocity because the time and energy
you might otherwise have spent on operations and maintenance can instead be spent
on developing and testing new features.

Scaling Your Service and Your Teams

As your product grows, its inevitable that you will need to scale both your software
and the teams that develop it. Fortunately, Kubernetes can help with both of these
goals. Kubernetes achieves scalability by favoring decoupled architectures.

Decoupling

In a decoupled architecture each component is separated from other components by
defined APIs and service load balancers. APIs and load balancers isolate each piece
of the system from the others. APIs provide a buffer between implementer and
consumer, and load balancers provide a buffer between running instances of each
service.

Decoupling components via load balancers makes it easy to scale the programs that



make up your service, because increasing the size (and therefore the capacity) of the
program can be done without adjusting or reconfiguring any of the other layers of
your service.

Decoupling servers via APIs makes it easier to scale the development teams because
each team can focus on a single, smaller microservice with a comprehensible surface
area. Crisp APIs between microservices limit the amount of cross-team
communication overhead required to build and deploy software. This communication
overhead is often the major restricting factor when scaling teams.

Easy Scaling for Applications and Clusters

Concretely, when you need to scale your service, the immutable, declarative nature
of Kubernetes makes this scaling trivial to implement. Because your containers are
immutable, and the number of replicas is simply a number in a declarative config,
scaling your service upward is simply a matter of changing a number in a
configuration file, asserting this new declarative state to Kubernetes, and letting it
take care of the rest. Alternately, you can set up autoscaling and simply let
Kubernetes take care of it for you.

Of course, that sort of scaling assumes that there are resources available in your
cluster to consume. Sometimes you actually need to scale up the cluster itself. Here
again, Kubernetes makes this task easier. Because each machine in a cluster is
entirely identical to every other machine, and the applications themselves are
decoupled from the details of the machine by containers, adding additional resources
to the cluster is simply a matter of imaging a new machine and joining it into the
cluster. This can be accomplished via a few simple commands or via a prebaked
machine image.

One of the challenges of scaling machine resources is predicting their use. If you are
running on physical infrastructure, the time to obtain a new machine is measured in
days or weeks. On both physical and cloud infrastructure, predicting future costs is
difficult because it is hard to predict the growth and scaling needs of specific
applications.

Kubernetes can simplify forecasting future compute costs. To understand why this is
true, consider scaling up three teams, A, B, and C. Historically you have seen that
each team’s growth is highly variable and thus hard to predict. If you are
provisioning individual machines for each service, you have no choice but to



forecast based on the maximum expected growth for each service, since machines
dedicated to one team cannot be used for another team. If instead you use
Kubernetes to decouple the teams from the specific machines they are using, you can
forecast growth based on the aggregate growth of all three services. Combining three
variable growth rates into a single growth rate reduces statistical noise and produces
a more reliable forecast of expected growth. Furthermore, decoupling the teams from
specific machines means that teams can share fractional parts of each other’s
machines, reducing even further the overheads associated with forecasting growth of
computing resources.

Scaling Development Teams with Microservices

As noted in a variety of research, the ideal team size is the “two-pizza team,” or
roughly six to eight people, because this group size often results in good knowledge
sharing, fast decision making, and a common sense of purpose. Larger teams tend to
suffer from hierarchy, poor visibility, and infighting, which hinder agility and
success.

However, many projects require significantly more resources to be successful and
achieve their goals. Consequently, there is a tension between the ideal team size for
agility and the necessary team size for the product’s end goals.

The common solution to this tension has been the development of decoupled,
service-oriented teams that each build a single microservice. Each small team 1s
responsible for the design and delivery of a service that is consumed by other small
teams. The aggregation of all of these services ultimately provides the
implementation of the overall product’s surface area.

Kubernetes provides numerous abstractions and APIs that make it easier to build
these decoupled microservice architectures.

e Pods, or groups of containers, can group together container images developed by
different teams into a single deployable unit.

e Kubernetes services provide load balancing, naming, and discovery to isolate one
microservice from another.

e Namespaces provide isolation and access control, so that each microservice can
control the degree to which other services interact with it.



e Ingress objects provide an easy-to-use frontend that can combine multiple
microservices into a single externalized API surface area.

Finally, decoupling the application container image and machine means that
different microservices can colocate on the same machine without interfering with
each other, reducing the overhead and cost of microservice architectures. The health-
checking and rollout features of Kubernetes guarantee a consistent approach to
application rollout and reliability that ensures that a proliferation of microservice
teams does not also result in a proliferation of different approaches to service
production lifecycle and operations.

Separation of Concerns for Consistency and Scaling

In addition to the consistency that Kubernetes brings to operations, the decoupling
and separation of concerns produced by the Kubernetes stack lead to significantly
greater consistency for the lower levels of your infrastructure. This enables your
operations function to scale to managing many machines with a single small, focused
team. We have talked at length about the decoupling of application container and
machine/operating system (OS), but an important aspect of this decoupling is that the
container orchestration API becomes a crisp contract that separates the
responsibilities of the application operator from the cluster orchestration operator.
We call this the “not my monkey, not my circus” line. The application developer
relies on the service-level agreement (SLA) delivered by the container orchestration
API, without worrying about the details of how this SLA is achieved. Likewise, the
container orchestration API reliability engineer focuses on delivering the
orchestration API’s SLA without worrying about the applications that are running on
top of it.

This decoupling of concerns means that a small team running a Kubernetes cluster
can be responsible for supporting hundreds or even thousands of teams running
applications within that cluster (Figure 1-1). Likewise, a small team can be
responsible for tens (or more) of clusters running around the world. It’s important to
note that the same decoupling of containers and OS enables the OS reliability
engineers to focus on the SLA of the individual machine’s OS. This becomes another
line of separate responsibility, with the Kubernetes operators relying on the OS SLA,
and the OS operators worrying solely about delivering that SLA. Again, this enables
you to scale a small team of OS experts to a fleet of thousands of machines.
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Figure 1-1. An illustration of how different operations teams are decoupled using APIs

Of course, devoting even a small team to managing an OS is beyond the scale of
many organizations. In these environments, a managed Kubernetes-as-a-Service
(KaaS) provided by a public cloud provider is a great option.

NOTE

At the time of writing, you can use managed KaaS on Microsoft Azure, with Azure
Container Service, as well as on the Google Cloud Platform via the Google Container



Engine (GCE). There is no equivalent service available on Amazon Web Services
(AWS), though the kops project provides tools for easy installation and management of
Kubernetes on AWS (see “Installing Kubernetes on Amazon Web Services”).

The decision of whether to use KaaS or manage it yourself is one each user needs to
make based on the skills and demands of their situation. Often for small
organizations, KaaS provides an easy-to-use solution that enables them to focus their
time and energy on building the software to support their work rather than managing
a cluster. For a larger organization that can afford a dedicated team for managing its
Kubernetes cluster, it may make sense to manage it yourself since it enables greater
flexibility in terms of cluster capabilities and operations.

Abstracting Your Infrastructure

The goal of the public cloud is to provide easy-to-use, self-service infrastructure for
developers to consume. However, too often cloud APIs are oriented around
mirroring the infrastructure that IT expects, not the concepts (e.g., “virtual
machines” instead of “applications”) that developers want to consume. Additionally,
in many cases the cloud comes with particular details in implementation or services
that are specific to the cloud provider. Consuming these APIs directly makes it
difficult to run your application in multiple environments, or spread between cloud
and physical environments.

The move to application-oriented container APIs like Kubernetes has two concrete
benefits. First, as we described previously, it separates developers from specific
machines. This not only makes the machine-oriented IT role easier, since machines
can simply be added in aggregate to scale the cluster, but in the context of the cloud
it also enables a high degree of portability since developers are consuming a higher-
level API that is implemented in terms of the specific cloud infrastructure APIs.

When your developers build their applications in terms of container images and
deploy them in terms of portable Kubernetes APIs, transferring your application
between environments, or even running in hybrid environments, is simply a matter of
sending the declarative config to a new cluster. Kubernetes has a number of plug-ins
that can abstract you from a particular cloud. For example, Kubernetes services
know how to create load balancers on all major public clouds as well as several
different private and physical infrastructures. Likewise, Kubernetes



PersistentVolumes and PersistentVolumeClaims can be used to abstract your
applications away from specific storage implementations. Of course, to achieve this
portability you need to avoid cloud-managed services (e.g., Amazon’s DynamoDB
or Google’s Cloud Spanner), which means that you will be forced to deploy and
manage open source storage solutions like Cassandra, MySQL, or MongoDB.

Putting it all together, building on top of Kubernetes’s application-oriented
abstractions ensures that the effort that you put into building, deploying, and
managing your application is truly portable across a wide variety of environments.

Efficiency

In addition to the developer and IT management benefits that containers and
Kubernetes provide, there is also a concrete economic benefit to the abstraction.
Because developers no longer think in terms of machines, their applications can be
colocated on the same machines without impacting the applications themselves. This
means that tasks from multiple users can be packed tightly onto fewer machines.

Efficiency can be measured by the ratio of the useful work performed by a machine
or process to the total amount of energy spent doing so. When it comes to deploying
and managing applications, many of the available tools and processes (e.g., bash
scripts, apt updates, or imperative configuration management) are somewhat
inefficient. When discussing efficiency it’s often helpful to think of both the cost of
running a server and the human cost required to manage it.

Running a server incurs a cost based on power usage, cooling requirements, data
center space, and raw compute power. Once a server is racked and powered on (or
clicked and spun up), the meter literally starts running. Any idle CPU time is money
wasted. Thus, it becomes part of the system administrator’s responsibilities to keep
utilization at acceptable levels, which requires ongoing management. This is where
containers and the Kubernetes workflow come in. Kubernetes provides tools that
automate the distribution of applications across a cluster of machines, ensuring
higher levels of utilization than are possible with traditional tooling.

A further increase in efficiency comes from the fact that a developer’s test
environment can be quickly and cheaply created as a set of containers running in a
personal view of a shared Kubernetes cluster (using a feature called namespaces). In
the past, turning up a test cluster for a developer might have meant turning up three



machines. With Kubernetes it is simple to have all developers share a single test
cluster, aggregating their usage onto a much smaller set of machines. Reducing the
overall number of machines used in turn drives up the efficiency of each system:
since more of the resources (CPU, RAM, etc.) on each individual machine are used,
the overall cost of each container becomes much lower.

Reducing the cost of development instances in your stack enables development
practices that might previously have been cost-prohibitive. For example, with your
application deployed via Kubernetes it becomes conceivable to deploy and test every
single commit contributed by every developer throughout your entire stack.

When the cost of each deployment is measured in terms of a small number of
containers, rather than multiple complete virtual machines (VMs), the cost you incur
for such testing is dramatically lower. Returning to the original value of Kubernetes,
this increased testing also increases velocity, since you have both strong signals as to
the reliability of your code as well as the granularity of detail required to quickly
identify where a problem may have been introduced.

Summary

Kubernetes was built to radically change the way that applications are built and
deployed in the cloud. Fundamentally, it was designed to give developers more
velocity, efficiency, and agility. We hope the preceding sections have given you an
1dea of why you should deploy your applications using Kubernetes. Now that you
are convinced of that, the following chapters will teach you #ow to deploy your
application.

! Brendan Burns et al., “Borg, Omega, and Kubernetes: Lessons Learned from Three
Container-Management Systems over a Decade,” ACM Queue 14 (2016): 70-93,
available at http://bit.ly/2vIrL4S.



Chapter 2. Creating and Running
Containers

Kubernetes is a platform for creating, deploying, and managing distributed
applications. These applications come in many different shapes and sizes, but
ultimately, they are all comprised of one or more applications that run on individual
machines. These applications accept input, manipulate data, and then return the
results. Before we can even consider building a distributed system, we must first
consider how to build the application container images that make up the pieces of
our distributed system.

Applications are typically comprised of a language runtime, libraries, and your
source code. In many cases your application relies on external libraries such as 1ibc

and libss1. These external libraries are generally shipped as shared components in
the OS that you have installed on a particular machine.

Problems occur when an application developed on a programmer’s laptop has a
dependency on a shared library that isn’t available when the program is rolled out to
the production OS. Even when the development and production environments share
the exact same version of the OS, problems can occur when developers forget to
include dependent asset files inside a package that they deploy to production.

A program can only execute successfully if it can be reliably deployed onto the
machine where it should run. Too often the state of the art for deployment involves
running imperative scripts, which inevitably have twisty and Byzantine failure cases.

Finally, traditional methods of running multiple applications on a single machine
require that all of these programs share the same versions of shared libraries on the
system. If the different applications are developed by different teams or
organizations, these shared dependencies add needless complexity and coupling
between these teams.

In Chapter 1, we argued strongly for the value of immutable images and
infrastructure. It turns out that this is exactly the value provided by the container
image. As we will see, it easily solves all the problems of dependency management
and encapsulation just described.



When working with applications it’s often helpful to package them in a way that
makes it easy to share them with others. Docker, the default container runtime
engine, makes it easy to package an application and push it to a remote registry
where it can later be pulled by others.

In this chapter we are going to work with a simple example application that we built
for this book to help show this workflow in action. You can find the application on
GitHub.

Container images bundle an application and its dependencies, under a root
filesystem, into a single artifact. The most popular container image format is the
Docker image format, the primary image format supported by Kubernetes. Docker
images also include additional metadata used by a container runtime to start a
running application instance based on the contents of the container image.

This chapter covers the following topics:
e How to package an application using the Docker image format

e How to start an application using the Docker container runtime

Container Images

For nearly everyone, their first interaction with any container technology is with a
container image. A container image 1s a binary package that encapsulates all of the
files necessary to run an application inside of an OS container. Depending on how
you first experiment with containers, you will either build a container image from
your local filesystem or download a preexisting image from a container registry. In
either case, once the container image is present on your computer, you can run that
image to produce a running application inside an OS container.

The Docker Image Format

The most popular and widespread container image format is the Docker image
format, which was developed by the Docker open source project for packaging,
distributing, and running containers using the docker command. Subsequently work
has begun by Docker, Inc., and others to standardize the container image format via
the Open Container Image (OCI) project. While the OCI set of standards have
recently (as of mid-2017) been released as a 1.0 standard, adoption of these
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standards is still very early. The Docker image format continues to be the de facto
standard, and is made up of a series of filesystem layers. Each layer adds, removes,
or modifies files from the preceding layer in the filesystem. This is an example of an
overlay filesystem. There are a variety of different concrete implementations of such

filesystems, including aufs, overlay, and overlay?2.

CONTAINER LAYERING

Container images are constructed of a series of filesystem layers, where each
layer inherits and modifies the layers that came before it. To help explain this in
detail, let’s build some containers. Note that for correctness the ordering of the
layers should be bottom up, but for ease of understanding we take the opposite
approach:

L— container A: a base operating system only, such as Debian
L— container B: build upon #A, by adding Ruby v2.1.10
L— container C: build upon #A, by adding Golang v1.6

At this point we have three containers: A, B, and C. B and C are forked from A
and share nothing besides the base container’s files. Taking it further, we can
build on top of B by adding Rails (version 4.2.6). We may also want to support a
legacy application that requires an older version of Rails (e.g., version 3.2.x). We
can build a container image to support that application based on B also, planning
to someday migrate the app to v4:

. (continuing from above)

L— container B: build upon #A, by adding Ruby v2.1.10
L— container D: build upon #B, by adding Rails v4.2.6
L— container E: build upon #B, by adding Rails v3.2.x

Conceptually, each container image layer builds upon a previous one. Each
parent reference is a pointer. While the example here is a simple set of
containers, other real-world containers can be part of a larger and extensive
directed acyclic graph.

Container images are typically combined with a container configuration file, which
provides instructions on how to set up the container environment and execute an



application entrypoint. The container configuration often includes information on
how to set up networking, namespace isolation, resource constraints (cgroups), and
what syscall restrictions should be placed on a running container instance. The
container root filesystem and configuration file are typically bundled using the
Docker image format.

Containers fall into two main categories:
e System containers
e Application containers

System containers seek to mimic virtual machines and often run a full boot process.
They often include a set of system services typically found in a VM, such as ssh,
cron, and syslog.

Application containers differ from system containers in that they commonly run a
single application. While running a single application per container might seem like
an unnecessary constraint, it provides the perfect level of granularity for composing
scalable applications, and is a design philosophy that is leveraged heavily by pods.

Building Application Images with Docker

In general, container orchestration systems like Kubernetes are focused on building
and deploying distributed systems made up of application containers. Consequently,
we will focus on application containers for the remainder of this chapter.

Dockerfiles

A Dockerfile can be used to automate the creation of a Docker container image. The

following example describes the steps required to build the kuard (Kubernetes up
and running) image, which is both secure and lightweight in terms of size:

FROM alpine

MAINTAINER Kelsey Hightower <kelsey.hightower@kuar.io>
COPY bin/kuard /kuard

ENTRYPOINT ["/kuard"]

This text can be stored in a text file, typically named Dockerfile, and used to create a



Docker image.

Run the following command to create the kuard Docker image:
$ docker build -t kuard-amdé64:1 .

We have chosen to build on top of Alpine, an extremely minimal Linux distribution.
Consequently, the final image should check in at around 6 MB, which is drastically
smaller than many publicly available images that tend to be built on top of more
complete OS versions such as Debian.

At this point our kuard image lives in the local Docker registry where the image was
built and is only accessible to a single machine. The true power of Docker comes
from the ability to share images across thousands of machines and the broader
Docker community.

Image Security

When it comes to security there are no shortcuts. When building images that will
ultimately run in a production Kubernetes cluster, be sure to follow best practices for
packaging and distributing applications. For example, don’t build containers with
passwords baked in—and this includes not just in the final layer, but any layers in
the image. One of the counterintuitive problems introduced by container layers is
that deleting a file in one layer doesn’t delete that file from preceding layers. It still
takes up space and it can be accessed by anyone with the right tools—an enterprising
attacker can simply create an image that only consists of the layers that contain the
password.

Secrets and images should never be mixed. If you do so, you will be hacked, and you
will bring shame to your entire company or department. We all want to be on TV
someday, but there are better ways to go about that.

Optimizing Image Sizes

There are several gotchas that come when people begin to experiment with container
images that lead to overly large images. The first thing to remember is that files that
are removed by subsequent layers in the system are actually still present in the
images; they’re just inaccessible. Consider the following situation:



L— layer A: contains a large file named 'BigFile’
L— layer B: removes 'BigFile'
L— layer C: builds on B, by adding a static binary

You might think that BigFile is no longer present in this image. After all, when you
run the image, it is no longer accessible. But in fact it is still present in layer A,
which means that whenever you push or pull the image, BigFile is still transmitted
through the network, even if you can no longer access it.

Another pitfall that people fall into revolves around image caching and building.
Remember that each layer is an independent delta from the layer below it. Every
time you change a layer, it changes every layer that comes after it. Changing the
preceding layers means that they need to be rebuilt, repushed, and repulled to deploy
your image to development.

To understand this more fully, consider two images:

L— layer A: contains a base 0S
L— layer B: adds source code server.js
L— layer C: installs the 'node' package

VErsus:

L— 1layer A: contains a base 0S
L— layer B: installs the 'node' package
L— layer C: adds source code server.js

It seems obvious that both of these images will behave identically, and indeed the
first time they are pulled they do. However, consider what happens when server.js
changes. In one case, it is only the change that needs to be pulled or pushed, but in
the other case, both server.js and the layer providing the node package need to be
pulled and pushed, since the node layer is dependent on the server.js layer. In
general, you want to order your layers from least likely to change to most likely to
change in order to optimize the image size for pushing and pulling.

Storing Images in a Remote Registry



What good is a container image if it’s only available on a single machine?

Kubernetes relies on the fact that images described in a pod manifest are available
across every machine in the cluster. One option for getting this image to all machines
in the cluster would be to export the kuard image and import it on every other
machine in the Kubernetes cluster. We can’t think of anything more tedious than
managing Docker images this way. The process of manually importing and exporting
Docker images has human error written all over it. Just say no!

The standard within the Docker community is to store Docker images in a remote
registry. There are tons of options when it comes to Docker registries, and what you
choose will be largely based on your needs in terms of security requirements and
collaboration features.

Generally speaking the first choice you need to make regarding a registry is whether
to use a private or a public registry. Public registries allow anyone to download
images stored in the registry, while private registries require authentication to
download images. In choosing public versus private, it’s helpful to consider your use
case.

Public registries are great for sharing images with the world, because they allow for
easy, unauthenticated use of the container images. You can easily distribute your
software as a container image and have confidence that users everywhere will have
the exact same experience.

In contrast, a private repository is best for storing your applications that are private
to your service and that you don’t want the world to use.

Regardless, to push an image, you need to authenticate to the registry. You can
generally do this with the docker login command, though there are some
differences for certain registries. In the examples here we are pushing to the Google
Cloud Platform registry, called the Google Container Registry (GCR). For new users
hosting publicly readable images, the Docker Hub is a great place to start.

Once you are logged in, you can tag the kuard image by prepending the target
Docker registry:

$ docker tag kuard-amd64:1 gcr.io/kuar-demo/kuard-amd64:1

Then you can push the kuard image:
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$ docker push gcr.io/kuar-demo/kuard-amdé64:1

Now that the kuard image is available on a remote registry, it’s time to deploy it
using Docker. Because we pushed it to the public Docker registry, it will be available
everywhere without authentication.

The Docker Container Runtime

Kubernetes provides an API for describing an application deployment, but relies on a
container runtime to set up an application container using the container-specific APIs
native to the target OS. On a Linux system that means configuring cgroups and
namespaces.

The default container runtime used by Kubernetes is Docker. Docker provides an
API for creating application containers on Linux and Windows systems.

Running Containers with Docker

The Docker CLI tool can be used to deploy containers. To deploy a container from
the gcr.io/kuar-demo/kuard-amd64:1 image, run the following command:

$ docker run -d --name kuard \
--publish 8080:8080 \
gcr.io/kuar-demo/kuard-amd64:1

This command starts the kuard database and maps ports 8080 on your local machine
to 8080 in the container. This is because each container gets its own IP address, so
listening on localhost inside the container doesn’t cause you to listen on your
machine. Without the port forwarding, connections will be inaccessible to your
machine.

Exploring the kuard Application

kuard exposes a simple web interface, which can be loaded by pointing your
browser at http://localhost: 85080 or via the command line:

$ curl http://localhost:8080


http://localhost:8080

kuard also exposes a number of interesting functions that we will explore later on in
this book.

Limiting Resource Usage

Docker provides the ability to limit the amount of resources used by applications by
exposing the underlying cgroup technology provided by the Linux kernel.

Limiting memory resources

One of the key benefits to running applications within a container is the ability to
restrict resource utilization. This allows multiple applications to coexist on the same
hardware and ensures fair usage.

To limit kuard to 200 MB of memory and 1 GB of swap space, use the - -memory
and - -memory-swap flags with the docker run command.

Stop and remove the current kuard container:

$ docker stop kuard
$ docker rm kuard

Then start another kuard container using the appropriate flags to limit memory
usage:

$ docker run -d --name kuard \
--publish 8080:8080 \
--memory 200m \
--memory-swap 1G \
gcr.io/kuar-demo/kuard-amd64:1

Limiting CPU resources

Another critical resource on a machine is the CPU. Restrict CPU utilization using the
- -cpu-shares flag with the docker run command:

$ docker run -d --name kuard \
--publish 8080:8080 \
--memory 200m \
--memory-swap 1G \
--cpu-shares 1024 \



gcr.io/kuar-demo/kuard-amd64:1

Cleanup

Once you are done building an image, you can delete it with the docker rmi
command:

docker rmi <tag-name>
or
docker rmi <image-id>

Images can either be deleted via their tag name (e.g., gcr.io/kuar-demo/kuard-
amd64:1) or via their image ID. As with all ID values in the docker tool, the image
ID can be shortened as long as it remains unique. Generally only three or four
characters of the ID are necessary.

It’s important to note that unless you explicitly delete an image it will live on your
system forever, even if you build a new image with an identical name. Building this
new image simply moves the tag to the new image; it doesn’t delete or replace the
old image.

Consequently, as you iterate while you are creating a new image, you will often
create many, many different images that end up taking up unnecessary space on your
computer.

To see the images currently on your machine, you can use the docker images
command. You can then delete tags you are no longer using.

A slightly more sophisticated approach is to set up a cron job to run an image
garbage collector. For example, the docker-gc tool is a commonly used image

garbage collector that can easily run as a recurring cron job, once per day or once
per hour, depending on how many images you are creating.

Summary

Application containers provide a clean abstraction for applications, and when
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packaged in the Docker image format, applications become easy to build, deploy,
and distribute. Containers also provide isolation between applications running on the
same machine, which helps avoid dependency conflicts. The ability to mount
external directories means we can run not only stateless applications in a container,
but also applications like influxdb that generate lots of data.



Chapter 3. Deploying a
Kubernetes Cluster

Now that you have successfully built an application container, you are motivated to
learn how to deploy it into a complete reliable, scalable distributed system. Of
course, to do that, you need a working Kubernetes cluster. At this point, there are
several cloud-based Kubernetes services that make it easy to create a cluster with a
few command-line instructions. We highly recommend this approach if you are just
getting started with Kubernetes. Even if you are ultimately planning on running
Kubernetes on bare metal, it makes sense to quickly get started with Kubernetes,
learn about Kubernetes itself, and then learn how to install it on physical machines.

Of course, using a cloud-based solution requires paying for those cloud-based
resources as well as having an active network connection to the cloud. For these
reasons, local development can be more attractive, and in that case the minikube
tool provides an easy-to-use way to get a local Kubernetes cluster up running in a
VM on your local laptop or desktop. Though this is attractive, minikube only creates
a single-node cluster, which doesn’t quite demonstrate all of the aspects of a
complete Kubernetes cluster. For that reason, we recommend people start with a
cloud-based solution, unless it really doesn’t work for their situation. If you truly
insist on starting on bare metal, Appendix A at the end of this book gives instructions
for building a cluster from a collection of Raspberry Pi single-board computers.
These instructions use the kubeadm tool and can be adapted to other machines
beyond Raspberry Pis.

Installing Kubernetes on a Public Cloud Provider

This chapter covers installing Kubernetes on the three major cloud providers,
Amazon Web Services (AWS), Microsoft Azure, and the Google Cloud Platform.

Google Container Service

The Google Cloud Platform offers a hosted Kubernetes-as-a-Service called Google



Container Engine (GKE). To get started with GKE, you need a Google Cloud
Platform account with billing enabled and the gcloud tool installed.

Once you have gcloud installed, first set a default zone:
$ gcloud config set compute/zone us-westl-a

Then you can create a cluster:
$ gcloud container clusters create kuar-cluster

This will take a few minutes. When the cluster is ready you can get credentials for
the cluster using:

$ gcloud auth application-default login

At this point, you should have a cluster configured and ready to go. Unless you
would prefer to install Kubernetes elsewhere, you can skip to “The Kubernetes
Client”.

If you run into trouble, the complete instructions for creating a GKE cluster can be
found in the Google Cloud Platform documentation.

Installing Kubernetes with Azure Container Service

Microsoft Azure offers a hosted Kubernetes-as-a-Service as part of the Azure
Container Service. The easiest way to get started with Azure Container Service is to
use the built-in Azure Cloud Shell in the Azure portal. You can activate the shell by

clicking the shell icon:

in the upper-right toolbar. The shell has the az tool automatically installed and
configured to work with your Azure environment.

Alternatively, you can install the az command-line interface (CLI) on your local
machine.

Once you have the shell up and working, you can run:
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$ az group create --name=kuar --location=westus
Once the resource group is created, you can create a cluster using:

$ az acs create --orchestrator-type=kubernetes \
--resource-group=kuar --name=kuar-cluster

This will take a few minutes. Once the cluster is created, you can get credentials for
the cluster with:

$ az acs kubernetes get-credentials --resource-group=kuar --name=kuar-cluster
If you don’t already have the kubectl tool installed, you can install it using:
$ az acs kubernetes install-cli

Complete instructions for installing Kubernetes on Azure can be found in the Azure
documentation.

Installing Kubernetes on Amazon Web Services

AWS does not currently offer hosted Kubernetes service. The landscape for
managing Kubernetes on AWS is a fast-evolving area with new and improved tools
being introduced often. Here are a couple of options that make it easy to get started:

e The easiest way to launch a small cluster appropriate for exploring Kubernetes
with this book is using the Quick Start for Kubernetes by Heptio. This is a simple
CloudFormation template that can launch a cluster using the AWS Console.

e For a more fully featured management solution, consider using a project called
kops. You can find a complete tutorial for installing Kubernetes on AWS using
kops on GitHub.

Installing Kubernetes Locally Using minikube

If you need a local development experience, or you don’t want to pay for cloud
resources, you can install a simple single-node cluster using minikube. While
minikube is a good simulation of a Kubernetes cluster, it is really intended for local
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development, learning, and experimentation. Because it only runs ina VM on a
single node, it doesn’t provide the reliability of a distributed Kubernetes cluster.

In addition, certain features described in this book require integration with a cloud
provider. These features are either not available or work in a limited way with

minikube.

NOTE

You need to have a hypervisor installed on your machine to use minikube. For Linux
and macOS, this is generally virtualbox. On Windows, the Hyper -V hypervisor is the
default option. Make sure you install the hypervisor before using minikube.

You can find the minikube tool on GitHub. There are binaries for Linux, macOS,

and Windows that you can download. Once you have the minikube tool installed
you can create a local cluster using:

S minikube start

This will create a local VM, provision Kubernetes, and create a local kubectl
configuration that points to that cluster.

When you are done with your cluster, you can stop the VM with:
$ minikube stop
If you want to remove the cluster, you can run:

S minikube delete

Running Kubernetes on Raspberry Pi

If you want to experiment with a realistic Kubernetes cluster but don’t want to pay a
lot, a very nice Kubernetes cluster can be built on top of Raspberry Pi computers for
a relatively small cost. The details of building such a cluster are out of scope for this
chapter, but they are given in Appendix A at the end of this book.
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The Kubernetes Client

The official Kubernetes client is kubectl: a command-line tool for interacting with
the Kubernetes API. kubectl can be used to manage most Kubernetes objects such

as pods, ReplicaSets, and services. kubectl can also be used to explore and verify
the overall health of the cluster.

We’ll use the kubectl tool to explore the cluster you just created.

Checking Cluster Status

The first thing you can do is check the version of the cluster that you are running:
$ kubectl version

This will display two different versions: the version of the local kubectl tool, as
well as the version of the Kubernetes API server.

NOTE

Don’t worry if these versions are different. The Kubernetes tools are backward- and
forward-compatible with different versions of the Kubernetes API, so long as you stay
within two minor versions of the tools and the cluster and don’t try to use newer features
on an older cluster. Kubernetes follows the semantic versioning specification, and this
minor version is the middle number (e.g., the 5 in 1.5.2).

Now that we’ve established that you can communicate with your Kubernetes cluster,
we’ll explore the cluster in more depth.

First, we can get a simple diagnostic for the cluster. This is a good way to verify that
your cluster is generally healthy:

$ kubectl get componentstatuses
The output should look like this:

NAME STATUS MESSAGE ERROR
scheduler Healthy ok



controller-manager Healthy ok
etcd-0 Healthy {"health": "true"}

You can see here the components that make up the Kubernetes cluster. The

controller-manager is responsible for running various controllers that regulate
behavior in the cluster: for example, ensuring that all of the replicas of a service are

available and healthy. The scheduler is responsible for placing different pods onto

different nodes in the cluster. Finally, the etcd server is the storage for the cluster
where all of the API objects are stored.

Listing Kubernetes Worker Nodes

Next, we can list out all of the nodes in our cluster:

$ kubectl get nodes

NAME STATUS AGE
kubernetes Ready,master 45d
node-1 Ready 45d
node-2 Ready 45d
node-3 Ready 45d

You can see this is a four-node cluster that’s been up for 45 days. In Kubernetes
nodes are separated into master nodes that contain containers like the API server,
scheduler, etc., which manage the cluster, and worker nodes where your containers

will run. Kubernetes won’t generally schedule work onto master nodes to ensure
that user workloads don’t harm the overall operation of the cluster.

You can use the kubectl describe command to get more information about a
specific node such as node-1:

S kubectl describe nodes node-1

First, you see basic information about the node:

Name: node-1
Role:
Labels: beta.kubernetes.io/arch=arm

beta.kubernetes.io/os=11inux
kubernetes.io/hostname=node-1



You can see that this node is running the Linux OS and is running on an ARM

Processor.

Next, you see information about the operation of node-1 itself:

Conditions:
Type Status LastHeartbeatTime
OutOfDisk False Sun, 05 Feb 2017..

MemoryPressure False Sun, 05 Feb 2017..
DiskPressure False Sun, 05 Feb 2017..
Ready True Sun, 05 Feb 2017..

Reason Message
KubeletHasSufficientDisk  kubelet..
KubeletHasSufficientMemory kubelet..
KubeletHasNoDiskPressure kubelet..
KubeletReady kubelet..

These statuses show that the node has sufficient disk and memory space, and it is
reporting that it is healthy to the Kubernetes master. Next, there is information about

the capacity of the machine:

Capacity:
alpha.kubernetes.io/nvidia-gpu: 0
cpu: 4
memory: 882636K1i
pods: 110
Allocatable:
alpha.kubernetes.io/nvidia-gpu: 0
cpu: 4
memory: 882636K1
pods: 110

Then, there is information about the software on the node, including the version of
Docker running, the versions of Kubernetes and the Linux kernel, and more:

System Info:

Machine ID: 9989a26f06984d6dbadc01770f018e3b
System UUID: 9989a26f06984d6dbadc01770f018e3b
Boot ID: 98339c67-7924-446Cc-92aa-clbfe5d213e6
Kernel Version: 4.4.39-hypriotos-v7+

0S Image: Raspbian GNU/Linux 8 (jessie)
Operating System: 1inux

Architecture: arm

Container Runtime Version: docker://1.12.6

Kubelet Version: vl.5.2

Kube-Proxy Version: v1.5.2

PodCIDR: 10.244.2.0/24



ExternallID: node-1

Finally, there is information about the pods that are currently running on this node:

Non-terminated Pods: (3 in total)
Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits
kube-system kube-dns.. 260m (6%) 0 (0%) 140M1 (16%) 220M1 (25%)
kube-system kube-fla.. 0 (0%) 0 (0%) 0 (0%) 0 (0%)
kube-system kube-pro.. 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.

CPU Requests CPU Limits Memory Requests Memory Limits
260m (6%) 0 (0%) 140M1 (16%) 220M1 (25%)
No events.

From this output you can see the pods on the node (e.g., the kube-dns pod that
supplies DNS services for the cluster), the CPU and memory that each pod is
requesting from the node, as well as the total resources requested. It’s worth noting
here that Kubernetes tracks both the request and upper limit for resources for each
pod that runs on a machine. The difference between requests and limits is described
in detail in Chapter 5, but in a nutshell, resources requested by a pod are guaranteed
to be present on the node, while a pod’s limit is the maximum amount of a given
resource that a pod can consume. A pod’s limit can be higher than its request, in
which case the extra resources are supplied on a best-effort basis. They are not
guaranteed to be present on the node.

Cluster Components

One of the interesting aspects of Kubernetes is that many of the components that
make up the Kubernetes cluster are actually deployed using Kubernetes itself. We’ll
take a look at a few of these. These components use a number of the concepts that
we’ll introduce in later chapters. All of these components run in the kube-system

namespace. !

Kubernetes Proxy

The Kubernetes proxy is responsible for routing network traffic to load-balanced



services in the Kubernetes cluster. To do its job, the proxy must be present on every
node in the cluster. Kubernetes has an API object named DaemonSet, which you will
learn about later in the book, that is used in many clusters to accomplish this. If your
cluster runs the Kubernetes proxy with a DaemonSet, you can see the proxies by
running:

$ kubectl get daemonSets --namespace=kube-system kube-proxy
NAME DESIRED CURRENT READY NODE-SELECTOR AGE
kube-proxy 4 4 4 <none> 45d

Kubernetes DNS

Kubernetes also runs a DNS server, which provides naming and discovery for the
services that are defined in the cluster. This DNS server also runs as a replicated
service on the cluster. Depending on the size of your cluster, you may see one or
more DNS servers running in your cluster. The DNS service is run as a Kubernetes
deployment, which manages these replicas:

$ kubectl get deployments --namespace=kube-system kube-dns
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
kube-dns 1 1 1 1 45d

There is also a Kubernetes service that performs load-balancing for the DNS server:

$ kubectl get services --namespace=kube-system kube-dns
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns  10.96.0.10  <none> 53/UDP,53/TCP  45d

This shows that the DNS service for the cluster has the address 10.96.0.10. If you log
into a container in the cluster, you’ll see that this has been populated into the
/etc/resolv.conf file for the container.

Kubernetes Ul

The final Kubernetes component is a GUI. The Ul is run as a single replica, but it is
still managed by a Kubernetes deployment for reliability and upgrades. You can see
this UI server using:

$ kubectl get deployments --namespace=kube-system kubernetes-dashboard



NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
kubernetes-dashboard 1 1 1 1 45d

The dashboard also has a service that performs load balancing for the dashboard:

$ kubectl get services --namespace=kube-system kubernetes-dashboard
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes-dashboard 10.99.104.174  <nodes> 80:32551/TCP  45d

We can use the kubectl proxy to access this UI. Launch the Kubernetes proxy
using:

$ kubectl proxy

This starts up a server running on localhost:8001. If you visit
http.//localhost:8001/ui in your web browser, you should see the Kubernetes web
Ul You can use this interface to explore your cluster, as well as create new
containers. The full details of this interface are outside of the scope of this book, and
it is changing rapidly as the dashboard is improved.

Summary

Hopefully at this point you have a Kubernetes cluster (or three) up and running and
you’ve used a few commands to explore the cluster you have created. Next, we’ll
spend some more time exploring the command-line interface to that Kubernetes
cluster and teach you how to master the kubectl tool. Throughout the rest of the

book, you’ll be using kubectl and your test cluster to explore the various objects in
the Kubernetes API.

' As you’ll learn in the next chapter, a namespace in Kubernetes is an entity for
organizing Kubernetes resources. You can think of it like a folder in a filesystem.
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Chapter 4. Common kubectl
Commands

The kubectl command-line utility is a powerful tool, and in the following chapters
you will use it to create objects and interact with the Kubernetes API. Before that,

however, it makes sense to go over the basic kubectl commands that apply to all
Kubernetes objects.

Namespaces

Kubernetes uses namespaces to organize objects in the cluster. You can think of each
namespace as a folder that holds a set of objects. By default, the kubectl command-
line tool interacts with the default namespace. If you want to use a different
namespace, you can pass kubectl the - -namespace flag. For example, kubectl - -
namespace=mystuff references objects in the mystuff namespace.

Contexts

If you want to change the default namespace more permanently, you can use a
context. This gets recorded in a kubectl configuration file, usually located at

SHOME/ . kube/config. This configuration file also stores how to both find and
authenticate to your cluster. For example, you can create a context with a different

default namespace for your kubectl commands using:
$ kubectl config set-context my-context --namespace=mystuff

This creates a new context, but it doesn’t actually start using it yet. To use this newly
created context, you can run:

$ kubectl config use-context my-context

Contexts can also be used to manage different clusters or different users for



authenticating to those clusters using the - -users or - -clusters flags with the
set-context command.

Viewing Kubernetes API Objects

Everything contained in Kubernetes is represented by a RESTful resource.
Throughout this book, we refer to these resources as Kubernetes objects. Each
Kubernetes object exists at a unique HTTP path; for example, Attps://your-
k8s.com/api/vl/namespaces/default/pods/my-pod leads to the representation of a pod

in the default namespace named my - pod. The kubectl command makes HTTP
requests to these URLSs to access the Kubernetes objects that reside at these paths.

The most basic command for viewing Kubernetes objects via kubectl is get. If you
run kubectl get <resource-name>you will get a listing of all resources in the
current namespace. If you want to get a specific resource, you can use kubectl get
<resource-name> <object-name>.

By default, kubectl uses a human-readable printer for viewing the responses from
the API server, but this human-readable printer removes many of the details of the
objects to fit each object on one terminal line. One way to get slightly more
information is to add the -o wide flag, which gives more details, on a longer line. If
you want to view the complete object, you can also view the objects as raw JSON or
YAML using the -o json or -o yaml flags, respectively.

A common option for manipulating the output of kubectl is to remove the headers,
which is often useful when combining kubectl with Unix pipes (e.g., kubectl .. |
awk ..). If you specify the - -no-headers flag, kubectl will skip the headers at the
top of the human-readable table.

Another common task is extracting specific fields from the object. kubectl uses the
JSONPath query language to select fields in the returned object. The complete
details of JSONPath are beyond the scope of this chapter, but as an example, this
command will extract and print the IP address of the pod:

$ kubectl get pods my-pod -o jsonpath --template={.status.podIP}

If you are interested in more detailed information about a particular object, use the
describe command:


https://your-k8s.com/api/v1/namespaces/default/pods/my-pod

$ kubectl describe <resource-name> <obj-name>

This will provide a rich multiline human-readable description of the object as well as
any other relevant, related objects and events in the Kubernetes cluster.

Creating, Updating, and Destroying Kubernetes
Objects

Objects in the Kubernetes API are represented as JSON or YAML files. These files
are either returned by the server in response to a query or posted to the server as part
of an API request. You can use these YAML or JSON files to create, update, or
delete objects on the Kubernetes server.

Let’s assume that you have a simple object stored in obj.yaml. You can use kubectl
to create this object in Kubernetes by running:

$ kubectl apply -f obj.yaml

Notice that you don’t need to specify the resource type of the object; it’s obtained
from the object file itself.

Similarly, after you make changes to the object, you can use the apply command
again to update the object:

$ kubectl apply -f obj.yaml

NOTE

If you feel like making interactive edits, instead of editing a local file, you can instead
use the edit command, which will download the latest object state, and then launch an
editor that contains the definition:

$ kubectl edit <resource-name> <obj-name>

After you save the file, it will be automatically uploaded back to the Kubernetes cluster.

When you want to delete an object, you can simply run:



$ kubectl delete -f obj.yaml

But it is important to note that kubectl will not prompt you to confirm the delete.
Once you issue the command, the object will be deleted.

Likewise, you can delete an object using the resource type and name:

$ kubectl delete <resource-name> <obj-name>

Labeling and Annotating Objects

Labels and annotations are tags for your objects. We’ll discuss the differences in
Chapter 6, but for now, you can update the labels and annotations on any Kubernetes
object using the annotate and label commands. For example, to add the
color=red label to a pod named bar, you can run:

$ kubectl label pods bar color=red

The syntax for annotations is identical.

By default, label and annotate will not let you overwrite an existing label. To do
this, you need to add the - -overwrite flag.

If you want to remove a label, you can use the -<label-name> syntax:
$ kubectl label pods bar -color

This will remove the color label from the pod named bar.

Debugging Commands

kubectl also makes a number of commands available for debugging your
containers. You can use the following to see the logs for a running container:

$ kubectl logs <pod-name>

If you have multiple containers in your pod you can choose the container to view
using the -c flag.



By default, kubectl logs lists the current logs and exits. If you instead want to

continuously stream the logs back to the terminal without exiting, you can add the -f
(follow) command-line flag.

You can also use the exec command to execute a command in a running container:
$ kubectl exec -it <pod-name> -- bash

This will provide you with an interactive shell inside the running container so that
you can perform more debugging.

Finally, you can copy files to and from a container using the cp command:
$ kubectl cp <pod-name>:/path/to/remote/file /path/to/local/file

This will copy a file from a running container to your local machine. You can also
specify directories, or reverse the syntax to copy a file from your local machine back
out into the container.

Summary

kubectl is a powerful tool for managing your applications in your Kubernetes
cluster. This chapter has illustrated many of the common uses for the tool, but

kubectl has a great deal of built-in help available. You can start viewing this help
with:

kubectl help
or:

kubectl help command-name



Chapter 5. Pods

In earlier chapters we discussed how you might go about containerizing your
application, but in real-world deployments of containerized applications you will
often want to colocate multiple applications into a single atomic unit, scheduled onto
a single machine.

A canonical example of such a deployment is illustrated in Figure 5-1, which
consists of a container serving web requests and a container synchronizing the
filesystem with a remote Git repository.

My Serving Pod

Web Serving
Container

Git Synch.
Container

Shared
Filesystem

Figure 5-1. An example Pod with two containers and a shared filesystem

At first, it might seem tempting to wrap up both the web server and the Git
synchronizer into a single container. After closer inspection, however, the reasons
for the separation become clear. First, the two different containers have significantly
different requirements in terms of resource usage. Take, for example, memory.
Because the web server is serving user requests, we want to ensure that it is always



available and responsive. On the other hand, the Git synchronizer isn’t really user-
facing and has a “best effort” quality of service.

Suppose that our Git synchronizer has a memory leak. We need to ensure that the Git
synchronizer cannot use up memory that we want to use for our web server, since
this can affect web server performance or even crash the server.

This sort of resource isolation is exactly the sort of thing that containers are designed
to accomplish. By separating the two applications into two separate containers we
can ensure reliable web server operation.

Of course, the two containers are quite symbiotic; it makes no sense to schedule the
web server on one machine and the Git synchronizer on another. Consequently,
Kubernetes groups multiple containers into a single, atomic unit called a Pod. (The
name goes with the whale theme of Docker containers, since a Pod is also a group of
whales.)

Pods in Kubernetes

A Pod represents a collection of application containers and volumes running in the
same execution environment. Pods, not containers, are the smallest deployable
artifact in a Kubernetes cluster. This means all of the containers in a Pod always land
on the same machine.

Each container within a Pod runs in its own cgroup, but they share a number of
Linux namespaces.

Applications running in the same Pod share the same [P address and port space
(network namespace), have the same hostname (UTS namespace), and can
communicate using native interprocess communication channels over System V IPC
or POSIX message queues (IPC namespace). However, applications in different Pods
are isolated from each other; they have different IP addresses, different hostnames,
and more. Containers in different Pods running on the same node might as well be on
different servers.

Thinking with Pods

One of the most common questions that occurs in the adoption of Kubernetes is
“What should I put in a Pod?”



Sometimes people see Pods and think, “Aha! A WordPress container and a MySQL
database container should be in the same Pod.” However, this kind of Pod is actually
an example of an antipattern for Pod construction. There are two reasons for this.
First, Wordpress and its database are not truly symbiotic. If the WordPress container
and the database container land on different machines, they still can work together
quite effectively, since they communicate over a network connection. Secondly, you
don’t necessarily want to scale WordPress and the database as a unit. WordPress
itself is mostly stateless, and thus you may want to scale your WordPress frontends
in response to frontend load by creating more WordPress Pods. Scaling a MySQL
database is much trickier, and you would be much more likely to increase the
resources dedicated to a single MySQL Pod. If you group the WordPress and
MySQL containers together in a single Pod, you are forced to use the same scaling
strategy for both containers, which doesn’t fit well.

In general, the right question to ask yourself when designing Pods is, “Will these
containers work correctly if they land on different machines?” If the answer is “no,”
a Pod is the correct grouping for the containers. If the answer is “yes,” multiple Pods
1s probably the correct solution. In the example at the beginning of this chapter, the
two containers interact via a local filesystem. It would be impossible for them to
operate correctly if the containers were scheduled on different machines.

In the remaining sections of this chapter, we will describe how to create, introspect,
manage, and delete Pods in Kubernetes.

The Pod Manifest

Pods are described in a Pod manifest. The Pod manifest is just a text-file
representation of the Kubernetes API object. Kubernetes strongly believes in
declarative configuration. Declarative configuration means that you write down the
desired state of the world in a configuration and then submit that configuration to a
service that takes actions to ensure the desired state becomes the actual state.

NOTE

Declarative configuration is different from imperative configuration, where you simply
take a series of actions (e.g., apt-get install foo) to modify the world. Years of
production experience have taught us that maintaining a written record of the system’s
desired state leads to a more manageable, reliable system. Declarative configuration



enables numerous advantages, including code review for configurations as well as
documenting the current state of the world for distributed teams. Additionally, it is the
basis for all of the self-healing behaviors in Kubernetes that keep applications running
without user action.

The Kubernetes API server accepts and processes Pod manifests before storing them
in persistent storage (etcd). The scheduler also uses the Kubernetes API to find Pods
that haven’t been scheduled to a node. The scheduler then places the Pods onto
nodes depending on the resources and other constraints expressed in the Pod
manifests. Multiple Pods can be placed on the same machine as long as there are
sufficient resources. However, scheduling multiple replicas of the same application
onto the same machine is worse for reliability, since the machine is a single failure
domain. Consequently, the Kubernetes scheduler tries to ensure that Pods from the
same application are distributed onto different machines for reliability in the
presence of such failures. Once scheduled to a node, Pods don’t move and must be
explicitly destroyed and rescheduled.

Multiple instances of a Pod can be deployed by repeating the workflow described
here. However, ReplicaSets (Chapter 8) are better suited for running multiple
instances of a Pod. (It turns out they’re also better at running a single Pod, but we’ll
get into that later.)

Creating a Pod

The simplest way to create a Pod is via the imperative kubectl run command. For
example, to run our same kuard server, use:

$ kubectl run kuard --image=gcr.io/kuar-demo/kuard-amd64:1
You can see the status of this Pod by running:
$ kubectl get pods

You may initially see the container as Pending, but eventually you will see it
transition to Running, which means that the Pod and its containers have been
successfully created.

Don’t worry too much about the random strings attached to the end of the Pod name.



This manner of creating a Pod actually creates it via Deployment and ReplicaSet
objects, which we will cover in later chapters.

For now, you can delete this Pod by running:
$ kubectl delete deployments/kuard

We will now move on to writing a complete Pod manifest by hand.

Creating a Pod Manifest

Pod manifests can be written using YAML or JSON, but YAML is generally
preferred because it is slightly more human-editable and has the ability to add
comments. Pod manifests (and other Kubernetes API objects) should really be
treated in the same way as source code, and things like comments help explain the
Pod to new team members who are looking at them for the first time.

Pod manifests include a couple of key fields and attributes: mainly a metadata

section for describing the Pod and its labels, a spec section for describing volumes,
and a list of containers that will run in the Pod.

In Chapter 2 we deployed kuard using the following Docker command:

$ docker run -d --name kuard \
--publish 8080:8080 \
gcr.io/kuar-demo/kuard-amd64:1

A similar result can be achieved by instead writing Example 5-1 to a file named

kuard-pod.yaml and then using kubectl commands to load that manifest to
Kubernetes.

Example 5-1. kuard-pod.yaml

apiVersion: vi
kind: Pod
metadata:
name: kuard
spec:
contailners:
- image: gcr.io/kuar-demo/kuard-amd64:1
name: kuard
ports:



- containerPort: 8080
name: http
protocol: TCP

Running Pods

In the previous section we created a Pod manifest that can be used to start a Pod
running kuard. Use the kubectl apply command to launch a single instance of
kuard:

$ kubectl apply -f kuard-pod.yaml

The Pod manifest will be submitted to the Kubernetes API server. The Kubernetes
system will then schedule that Pod to run on a healthy node in the cluster, where it

will be monitored by the kubelet daemon process. Don’t worry if you don’t
understand all the moving parts of Kubernetes right now; we’ll get into more details
throughout the book.

Listing Pods

Now that we have a Pod running, let’s go find out some more about it. Using the

kubectl command-line tool, we can list all Pods running in the cluster. For now, this
should only be the single Pod that we created in the previous step:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kuard 1/1 Running 0O 44s

You can see the name of the Pod (kuard) that we gave it in the previous YAML file.

In addition to the number of ready containers (1/1), the output also shows the status,
the number of times the Pod was restarted, as well as the age of the Pod.

If you ran this command immediately after the Pod was created, you might see:

NAME READY STATUS RESTARTS AGE
kuard 0/1 Pending 0 1s

The Pending state indicates that the Pod has been submitted but hasn’t been



scheduled yet.

If a more significant error occurs (e.g., an attempt to create a Pod with a container
image that doesn’t exist), it will also be listed in the status field.

NOTE

By default, the kubectl command-line tool tries to be concise in the information it
reports, but you can get more information via command-line flags. Adding -o wide to
any kubectl command will print out slightly more information (while still trying to
keep the information to a single line). Adding -0 json or -o yaml will print out the
complete objects in JSON or YAML, respectively.

Pod Details

Sometimes, the single-line view is insufficient because it is too terse. Additionally,
Kubernetes maintains numerous events about Pods that are present in the event
stream, not attached to the Pod object.

To find out more information about a Pod (or any Kubernetes object) you can use the

kubectl describe command. For example, to describe the Pod we previously
created, you can run:

$ kubectl describe pods kuard

This outputs a bunch of information about the Pod in different sections. At the top is
basic information about the Pod:

Name: kuard

Namespace: default

Node: node1/10.0.15.185

Start Time: Sun, 02 Jul 2017 15:00:38 -0700
Labels: <none>

Annotations: <none>

Status: Running

IP: 192.168.199.238

Controllers: <none>

Then there is information about the containers running in the Pod:



Containers:

kuard:
Container ID: docker://055095..
Image: gcr.io/kuar-demo/kuard-amd64:1
Image ID: docker-pullable://gcr.io/kuar-demo/kuard-amd64@sha256:a580..
Port: 8080/TCP
State: Running
Started: Sun, 02 Jul 2017 15:00:41 -0700
Ready: True
Restart Count: 0
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-cg5f5

(ro)

Finally, there are events related to the Pod, such as when it was scheduled, when its
image was pulled, and if/when it had to be restarted because of failing health checks:

Events:
Seen From SubObjectPath Type Reason Message
50s default-scheduler Normal Scheduled Success..
49s kubelet, nodel spec.containers{kuard} Normal Pulling pulling..
47s kubelet, nodel spec.containers{kuard} Normal Pulled Success...
47s kubelet, nodel spec.containers{kuard} Normal Created Created..

47s kubelet, nodel spec.containers{kuard} Normal Started Started..
Deleting a Pod
When it is time to delete a Pod, you can delete it either by name:
$ kubectl delete pods/kuard
or using the same file that you used to create it:
$ kubectl delete -f kuard-pod.yaml

When a Pod is deleted, it is not immediately killed. Instead, if you run kubectl get

pods you will see that the Pod is in the Terminating state. All Pods have a
termination grace period. By default, this is 30 seconds. When a Pod is transitioned

to Terminating it no longer receives new requests. In a serving scenario, the grace



period is important for reliability because it allows the Pod to finish any active
requests that it may be in the middle of processing before it is terminated.

It’s important to note that when you delete a Pod, any data stored in the containers
associated with that Pod will be deleted as well. If you want to persist data across

multiple instances of a Pod, you need to use PersistentVolumes, described at the
end of this chapter.

Accessing Your Pod

Now that your Pod is running, you’re going to want to access it for a variety of
reasons. You may want to load the web service that is running in the Pod. You may
want to view its logs to debug a problem that you are seeing, or even execute other
commands in the context of the Pod to help debug. The following sections detail
various ways that you can interact with the code and data running inside your Pod.

Using Port Forwarding

Later in the book, we’ll show how to expose a service to the world or other
containers using load balancers, but oftentimes you simply want to access a specific
Pod, even if it’s not serving traffic on the internet.

To achieve this, you can use the port-forwarding support built into the Kubernetes
API and command-line tools.

When you run:
$ kubectl port-forward kuard 8080:8080

a secure tunnel is created from your local machine, through the Kubernetes master,
to the instance of the Pod running on one of the worker nodes.

As long as the port-forward command is still running, you can access the Pod (in this
case the kuard web interface) on Attp.//localhost:8080.

Getting More Info with Logs

When your application needs debugging, it’s helpful to be able to dig deeper than
describe to understand what the application is doing. Kubernetes provides two
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commands for debugging running containers. The kubectl logs command
downloads the current logs from the running instance:

$ kubectl logs kuard

Adding the -f flag will cause you to continuously stream logs.

The kubectl logs command always tries to get logs from the currently running
container. Adding the - -previous flag will get logs from a previous instance of the
container. This is useful, for example, if your containers are continuously restarting
due to a problem at container startup.

NOTE

While using kubectl logs is useful for one-off debugging of containers in production
environments, it’s generally useful to use a log aggregation service. There are several

open source log aggregation tools, like fluentd and elasticsearch, as well as
numerous cloud logging providers. Log aggregation services provide greater capacity
for storing a longer duration of logs, as well as rich log searching and filtering
capabilities. Finally, they often provide the ability to aggregate logs from multiple Pods
into a single view.

Running Commands in Your Container with exec

Sometimes logs are insufficient, and to truly determine what’s going on you need to
execute commands in the context of the container itself. To do this you can use:

$ kubectl exec kuard date
You can also get an interactive session by adding the -it flags:

S kubectl exec -it kuard ash

Copying Files to and from Containers

At times you may need to copy files from a remote container to a local machine for
more in-depth exploration. For example, you can use a tool like Wireshark to



visualize tcpdump packet captures. Suppose you had a file called
/captures/capture3.txt inside a container in your Pod. You could securely copy that
file to your local machine by running:

$ kubectl cp <pod-name>:/captures/capture3.txt ./capture3.txt

Other times you may need to copy files from your local machine into a container.
Let’s say you want to copy SHOME/config.txt to a remote container. In this case,
you can run:

$ kubectl cp $SHOME/config.txt <pod-name>:[config.txt

Generally speaking, copying files into a container is an antipattern. You really
should treat the contents of a container as immutable. But occasionally it’s the most
immediate way to stop the bleeding and restore your service to health, since it is
quicker than building, pushing, and rolling out a new image. Once the bleeding is
stopped, however, it is critically important that you immediately go and do the image
build and rollout, or you are guaranteed to forget the local change that you made to
your container and overwrite it in the subsequent regularly scheduled rollout.

Health Checks

When you run your application as a container in Kubernetes, it is automatically kept
alive for you using a process health check. This health check simply ensures that the
main process of your application is always running. If it isn’t, Kubernetes restarts it.

However, in most cases, a simple process check is insufficient. For example, if your
process has deadlocked and is unable to serve requests, a process health check will
still believe that your application 1s healthy since its process 1s still running.

To address this, Kubernetes introduced health checks for application /iveness.
Liveness health checks run application-specific logic (e.g., loading a web page) to
verify that the application is not just still running, but is functioning properly. Since
these liveness health checks are application-specific, you have to define them in your
Pod manifest.

Liveness Probe



Once the kuard process is up and running, we need a way to confirm that it is
actually healthy and shouldn’t be restarted. Liveness probes are defined per
container, which means each container inside a Pod is health-checked separately. In

Example 5-2, we add a liveness probe to our kuard container, which runs an HTTP
request against the /healthy path on our container.

Example 5-2. kuard-pod-health.yaml

apiVersion: vi
kind: Pod
metadata:
name: kuard
spec:
contailners:

- image: gcr.io/kuar-demo/kuard-amd64:1
name: kuard
livenessProbe:

httpGet:
path: /healthy
port: 8080
initialDelaySeconds: 5
timeoutSeconds: 1
periodSeconds: 10
failureThreshold: 3
ports:
- containerPort: 8080
name: http
protocol: TCP

The preceding Pod manifest uses an httpGet probe to perform an HTTP GET request
against the /healthy endpoint on port 8080 of the kuard container. The probe sets
an initialDelaySeconds of 5, and thus will not be called until five seconds after
all the containers in the Pod are created. The probe must respond within the one-
second timeout, and the HTTP status code must be equal to or greater than 200 and
less than 400 to be considered successful. Kubernetes will call the probe every 10
seconds. If more than three probes fail, the container will fail and restart.

You can see this in action by looking at the kuard status page. Create a Pod using

this manifest and then port-forward to that Pod:

$ kubectl apply -f kuard-pod-health.yaml
$ kubectl port-forward kuard 8080:8080



Point your browser to http://localhost:85080. Click the “Liveness Probe” tab. You
should see a table that lists all of the probes that this instance of kuard has received.
If you click the “fail” link on that page, kuard will start to fail health checks. Wait
long enough and Kubernetes will restart the container. At that point the display will
reset and start over again. Details of the restart can be found with kubectl
describe kuard. The “Events” section will have text similar to the following:

Killing container with id docker://2ac946...:pod "kuard_default(9ee84...)"
container "kuard" is unhealthy, it will be killed and re-created.

Readiness Probe

Of course, liveness isn’t the only kind of health check we want to perform.
Kubernetes makes a distinction between liveness and readiness. Liveness determines
if an application is running properly. Containers that fail liveness checks are
restarted. Readiness describes when a container is ready to serve user requests.
Containers that fail readiness checks are removed from service load balancers.
Readiness probes are configured similarly to liveness probes. We explore
Kubernetes services in detail in Chapter 7.

Combining the readiness and liveness probes helps ensure only healthy containers
are running within the cluster.

Types of Health Checks

In addition to HTTP checks, Kubernetes also supports tcpSocket health checks that
open a TCP socket; if the connection 1s successful, the probe succeeds. This style of
probe is useful for non-HTTP applications; for example, databases or other non—

HTTP-based APIs.

Finally, Kubernetes allows exec probes. These execute a script or program in the
context of the container. Following typical convention, if this script returns a zero

exit code, the probe succeeds; otherwise, it fails. exec scripts are often useful for
custom application validation logic that doesn’t fit neatly into an HTTP call.

Resource Management

Most people move into containers and orchestrators like Kubernetes because of the
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radical improvements in image packaging and reliable deployment they provide. In
addition to application-oriented primitives that simplify distributed system
development, equally important is the ability to increase the overall utilization of the
compute nodes that make up the cluster. The basic cost of operating a machine,
either virtual or physical, is basically constant regardless of whether it is idle or fully
loaded. Consequently, ensuring that these machines are maximally active increases
the efficiency of every dollar spent on infrastructure.

Generally speaking, we measure this efficiency with the utilization metric.
Utilization is defined as the amount of a resource actively being used divided by the
amount of a resource that has been purchased. For example, if you purchase a one-
core machine, and your application uses one-tenth of a core, then your utilization is
10%.

With scheduling systems like Kubernetes managing resource packing, you can drive
your utilization to greater than 50%.

To achieve this, you have to tell Kubernetes about the resources your application
requires, so that Kubernetes can find the optimal packing of containers onto
purchased machines.

Kubernetes allows users to specify two different resource metrics. Resource requests
specify the minimum amount of a resource required to run the application. Resource
limits specify the maximum amount of a resource that an application can consume.
Both of these resource definitions are described in greater detail in the following
sections.

Resource Requests: Minimum Required Resources

With Kubernetes, a Pod requests the resources required to run its containers.
Kubernetes guarantees that these resources are available to the Pod. The most
commonly requested resources are CPU and memory, but Kubernetes has support for
other resource types as well, such as GPUs and more.

For example, to request that the kuard container lands on a machine with half a CPU
free and gets 128 MB of memory allocated to it, we define the Pod as shown in
Example 5-3.

Example 5-3. kuard-pod-resreq.yaml

apiVersion: vi1



kind: Pod
metadata:
name: kuard
spec:
contailners:
- image: gcr.io/kuar-demo/kuard-amd64:1
name: kuard

resources:
requests:
cpu: "500m"
memory: "128Mi"
ports:
- containerPort: 8080
name: http

protocol: TCP

NOTE

Resources are requested per container, not per Pod. The total resources requested by the
Pod is the sum of all resources requested by all containers in the Pod. The reason for this
is that in many cases the different containers have very different CPU requirements. For
example, in the web server and data synchronizer Pod, the web server is user-facing and
likely needs a great deal of CPU, while the data synchronizer can make do with very
little.

Request limit details

Requests are used when scheduling Pods to nodes. The Kubernetes scheduler will
ensure that the sum of all requests of all Pods on a node does not exceed the capacity
of the node. Therefore, a Pod is guaranteed to have at least the requested resources
when running on the node. Importantly, “request” specifies a minimum. It does not
specify a maximum cap on the resources a Pod may use. To explore what this means,
let’s look at an example.

Imagine that we have container whose code attempts to use all available CPU cores.
Suppose that we create a Pod with this container that requests 0.5 CPU. Kubernetes
schedules this Pod onto a machine with a total of 2 CPU cores.

As long as it 1s the only Pod on the machine, it will consume all 2.0 of the available
cores, despite only requesting 0.5 CPU.

If a second Pod with the same container and the same request of 0.5 CPU lands on



the machine, then each Pod will receive 1.0 cores.

If a third i1dentical Pod is scheduled, each Pod will receive 0.66 cores. Finally, if a
fourth identical Pod is scheduled, each Pod will receive the 0.5 core it requested, and
the node will be at capacity.

CPU requests are implemented using the cpu-shares functionality in the Linux
kernel.

NOTE

Memory requests are handled similarly to CPU, but there is an important difference. If a
container is over its memory request, the OS can’t just remove memory from the
process, because it’s been allocated. Consequently, when the system runs out of

memory, the kubelet terminates containers whose memory usage is greater than their
requested memory. These containers are automatically restarted, but with less available
memory on the machine for the container to consume.

Since resource requests guarantee resource availability to a Pod, they are critical to
ensuring that containers have sufficient resources in high-load situations.

Capping Resource Usage with Limits

In addition to setting the resources required by a Pod, which establishes the
minimum resources available to the Pod, you can also set a maximum on a Pod’s
resource usage via resource [imits.

In our previous example we created a kuard Pod that requested a minimum of 0.5 of
a core and 128 MB of memory. In the Pod manifest in Example 5-4, we extend this
configuration to add a limit of 1.0 CPU and 256 MB of memory.

Example 5-4. kuard-pod-reslim.yaml

apiVersion: vi1
kind: Pod
metadata:

name: kuard
spec:

containers:

- image: gcr.io/kuar-demo/kuard-amdé64:1
name: kuard



resources:

requests:
cpu: "500m"
memory: "128Mi"
limits:
cpu: "1000m"
memory: "256Mi"
ports:
- containerPort: 8080
name: http

protocol: TCP

When you establish limits on a container, the kernel is configured to ensure that
consumption cannot exceed these limits. A container with a CPU limit of 0.5 cores
will only ever get 0.5 cores, even if the CPU is otherwise idle. A container with a
memory limit of 256 MB will not be allowed additional memory (e.g., malloc will
fail) if its memory usage exceeds 256 MB.

Persisting Data with Volumes

When a Pod is deleted or a container restarts, any and all data in the container’s
filesystem is also deleted. This is often a good thing, since you don’t want to leave
around cruft that happened to be written by your stateless web application. In other
cases, having access to persistent disk is an important part of a healthy application.
Kubernetes models such persistent storage.

Using Volumes with Pods

To add a volume to a Pod manifest, there are two new stanzas to add to our
configuration. The first is a new spec.volumes section. This array defines all of the
volumes that may be accessed by containers in the Pod manifest. It’s important to
note that not all containers are required to mount all volumes defined in the Pod. The
second addition is the volumeMounts array in the container definition. This array
defines the volumes that are mounted into a particular container, and the path where
each volume should be mounted. Note that two different containers in a Pod can
mount the same volume at different mount paths.

The manifest in Example 5-5 defines a single new volume named kuard-data,
which the kuard container mounts to the /data path.



Example 5-5. kuard-pod-vol.yaml

apiVersion: v1
kind: Pod
metadata:
name: kuard
spec:
volumes:

- name: "kuard-data"

hostPath:
path: "/var/lib/kuard"
contailners:

- image: gcr.io/kuar-demo/kuard-amd64:1
name: kuard
volumeMounts:

- mountPath: "/data"
name: "kuard-data"
ports:
- containerPort: 8080
name: http
protocol: TCP

Different Ways of Using Volumes with Pods

There are a variety of ways you can use data in your application. The following are a
few, and the recommended patterns for Kubernetes.

Communication/synchronization

In the first example of a Pod, we saw how two containers used a shared volume to
serve a site while keeping it synchronized to a remote Git location. To achieve this,
the Pod uses an emptyDir volume. Such a volume is scoped to the Pod’s lifespan,
but it can be shared between two containers, forming the basis for communication
between our Git sync and web serving containers.

Cache

An application may use a volume that is valuable for performance, but not required
for correct operation of the application. For example, perhaps the application keeps
prerendered thumbnails of larger images. Of course, they can be reconstructed from
the original images, but that makes serving the thumbnails more expensive. You
want such a cache to survive a container restart due to a health check failure, and

thus emptyDir works well for the cache use case as well.



Persistent data

Sometimes you will use a volume for truly persistent data—data that is independent
of the lifespan of a particular Pod, and should move between nodes in the cluster if a
node fails or a Pod moves to a different machine for some reason. To achieve this,
Kubernetes supports a wide variety of remote network storage volumes, including
widely supported protocols like NFS or iSCSI as well as cloud provider network
storage like Amazon’s Elastic Block Store, Azure’s Files and Disk Storage, as well
as Google’s Persistent Disk.

Mounting the host filesystem

Other applications don’t actually need a persistent volume, but they do need some
access to the underlying host filesystem. For example, they may need access to the
/dev filesystem in order to perform raw block-level access to a device on the system.
For these cases, Kubernetes supports the hostDir volume, which can mount
arbitrary locations on the worker node into the container.

The previous example uses the hostDir volume type. The volume created is
/var/lib/kuard on the host.

Persisting Data Using Remote Disks

Oftentimes, you want the data a Pod is using to stay with the Pod, even if it is
restarted on a different host machine.

To achieve this, you can mount a remote network storage volume into your Pod.
When using network-based storage, Kubernetes automatically mounts and unmounts
the appropriate storage whenever a Pod using that volume is scheduled onto a
particular machine.

There are numerous methods for mounting volumes over the network. Kubernetes
includes support for standard protocols such as NFS and iSCSI as well as cloud
provider—based storage APIs for the major cloud providers (both public and private).
In many cases, the cloud providers will also create the disk for you if it doesn’t
already exist.

Here is an example of using an NFS server:

# Rest of pod definition above here



volumes:
- name: "kuard-data"
nfs:
server: my.nfs.server.local
path: "/exports"

Putting It All Together

Many applications are stateful, and as such we must preserve any data and ensure
access to the underlying storage volume regardless of what machine the application
runs on. As we saw earlier, this can be achieved using a persistent volume backed by
network-attached storage. We also want to ensure a healthy instance of the
application is running at all times, which means we want to make sure the container
running kuard is ready before we expose it to clients.

Through a combination of persistent volumes, readiness and liveness probes, and
resource restrictions Kubernetes provides everything needed to run stateful
applications reliably. Example 5-6 pulls this all together into one manifest.

Example 5-6. kuard-pod-full.yaml

apiVersion: vi
kind: Pod
metadata:
name: kuard
spec:
volumes:
- name: "kuard-data"
nfs:
server: my.nfs.server.local
path: "/exports"
containers:
- image: gcr.io/kuar-demo/kuard-amd64:1
name: kuard
ports:

- containerPort: 8080
name: http
protocol: TCP

resources:

requests:
cpu: "500m"
memory: "128Mi"

limits:
cpu: "1000m"



memory: "256Mi"
volumeMounts:
- mountPath: "/data"
name: "kuard-data"
livenessProbe:
httpGet:
path: /healthy
port: 8080
initialDelaySeconds: 5
timeoutSeconds: 1
periodSeconds: 10
failureThreshold: 3
readinessProbe:
httpGet:
path: /ready
port: 8080
initialDelaySeconds: 30
timeoutSeconds: 1
periodSeconds: 10
failureThreshold: 3

Persistent volumes are a deep topic that has many different details: in particular, the
manner in which persistent volumes, persistent volume claims, and dynamic volume
provisioning work together. There is a more in-depth examination of the subject in
Chapter 13.

Summary

Pods represent the atomic unit of work in a Kubernetes cluster. Pods are comprised
of one or more containers working together symbiotically. To create a Pod, you write
a Pod manifest and submit it to the Kubernetes API server by using the command-
line tool or (less frequently) by making HTTP and JSON calls to the server directly.

Once you’ve submitted the manifest to the API server, the Kubernetes scheduler
finds a machine where the Pod can fit and schedules the Pod to that machine. Once
scheduled, the kubelet daemon on that machine is responsible for creating the
containers that correspond to the Pod, as well as performing any health checks
defined in the Pod manifested.

Once a Pod is scheduled to a node, no rescheduling occurs if that node fails.
Additionally, to create multiple replicas of the same Pod you have to create and

name them manually. In a later chapter we introduce the ReplicaSet object and



show how you can automate the creation of multiple identical Pods and ensure that
they are recreated in the event of a node machine failure.



Chapter 6. Labels and
Annotations

Kubernetes was made to grow with you as your application scales both in size and
complexity. With this in mind, labels and annotations were added as foundational
concepts. Labels and annotations let you work in sets of things that map to how you
think about your application. You can organize, mark, and cross-index all of your
resources to represent the groups that make the most sense for your application.

Labels are key/value pairs that can be attached to Kubernetes objects such as Pods
and ReplicaSets. They can be arbitrary, and are useful for attaching identifying
information to Kubernetes objects. Labels provide the foundation for grouping
objects.

Annotations, on the other hand, provide a storage mechanism that resembles labels:
annotations are key/value pairs designed to hold nonidentifying information that can
be leveraged by tools and libraries.

Labels

Labels provide identifying metadata for objects. These are fundamental qualities of
the object that will be used for grouping, viewing, and operating.

NOTE

The motivations for labels grew out of Google’s experience in running large and
complex applications. There were a couple of lessons that emerged from this experience.
See the great Site Reliability Engineering by Betsy Beyer et al. (O’Reilly) for some
deeper background on how Google approaches production systems.

The first lesson is that production abhors a singleton. When deploying software, users
will often start with a single instance. However, as the application matures, these
singletons often multiply and become sets of objects. With this in mind, Kubernetes uses
labels to deal with sets of objects instead of single instances.

The second lesson is that any hierarchy imposed by the system will fall short for many
users. In addition, user grouping and hierarchy are subject to change over time. For
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instance, a user may start out with the idea that all apps are made up of many services.
However, over time, a service may be shared across multiple apps. Kubernetes labels are
flexible enough to adapt to these situations and more.

Labels have simple syntax. They are key/value pairs where both the key and value
are represented by strings. Label keys can be broken down into two parts: an
optional prefix and a name, separated by a slash. The prefix, if specified, must be a
DNS subdomain with a 253-character limit. The key name is required and must be
shorter than 63 characters. Names must also start and end with an alphanumeric

character and permit the use of dashes (-), underscores (_), and dots (. ) between
characters.

Label values are strings with a maximum length of 63 characters. The contents of the
label values follow the same rules as for label keys.

Table 6-1 shows valid label keys and values.

Table 6-1. Label examples

Key Value
acme.com/app-version 1.0.0
appVersion 1.0.0
app.version 1.0.0

kubernetes.io/cluster-service true

Applying Labels

Here we create a few deployments (a way to create an array of Pods) with some

interesting labels. We’ll take two apps (called alpaca and bandicoot) and have two
environments for each. We will also have two different versions.

1. First, create the alpaca-prod deployment and set the ver, app, and env labels:

$ kubectl run alpaca-prod \
--image=gcr.io/kuar-demo/kuard-amd64:1 \



--replicas=2 \
--labels="ver=1,app=alpaca,env=prod"

2. Next, create the alpaca-test deployment and set the ver, app, and env labels
with the appropriate values:

$ kubectl run alpaca-test \
--image=gcr.io/kuar-demo/kuard-amd64:2 \
--replicas=1 \
--labels="ver=2,app=alpaca,env=test"

3. Finally, create two deployments for bandicoot. Here we name the environments
prod and staging:

$ kubectl run bandicoot-prod \
--image=gcr.io/kuar-demo/kuard-amd64:2 \
--replicas=2 \
--labels="ver=2,app=bandicoot,env=prod"

$ kubectl run bandicoot-staging \
--image=gcr.io/kuar-demo/kuard-amd64:2 \
--replicas=1 \
--labels="ver=2,app=bandicoot,env=staging"

At this point you should have four deployments—alpaca-prod, alpaca-staging,
bandicoot-prod, and bandicoot-staging:

$ kubectl get deployments --show-labels

NAME ... LABELS

alpaca-prod ... app=alpaca,env=prod,ver=1
alpaca-test ... app=alpaca,env=test,ver=2
bandicoot-prod ... app=bandicoot,env=prod,ver=2
bandicoot-staging ... app=bandicoot,env=staging,ver=2

We can visualize this as a Venn diagram based on the labels (Figure 6-1).
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Figure 6-1. Visualization of labels applied to our deployments
Modifying Labels
Labels can also be applied (or updated) on objects after they are created.

$ kubectl label deployments alpaca-test "canary=true"

WARNING

There is a caveat to be aware of here. In this example, the kubectl label command
will only change the label on the deployment itself; it won’t affect the objects
(ReplicaSets and Pods) the deployment creates. To change those, you’ll need to change
the template embedded in the deployment (see Chapter 12).

You can also use the -L option to kubectl get to show a label value as a column:

$ kubectl get deployments -L canary

NAME DESIRED CURRENT ... CANARY
alpaca-prod 2 2 ... <none>
alpaca-test 1 1 ... true

bandicoot-prod 2 2 ... <none>
bandicoot-staging 1 1 . <none>

You can remove a label by applying a dash suffix:



$ kubectl label deployments alpaca-test "canary-"

Label Selectors

Label selectors are used to filter Kubernetes objects based on a set of labels.
Selectors use a simple Boolean language. They are used both by end users (via tools

like kubectl) and by different types of objects (such as how ReplicaSet relates to its
Pods).

Each deployment (via a ReplicaSet) creates a set of Pods using the labels specified in

the template embedded in the deployment. This is configured by the kubectl run
command.

Running the kubectl get pods command should return all the Pods currently

running in the cluster. We should have a total of six kuard Pods across our three
environments:

$ kubectl get pods --show-labels

NAME ... LABELS
alpaca-prod-3408831585-4nzfb ... app=alpaca,env=prod,ver=1,...
alpaca-prod-3408831585-kgala ... app=alpaca,env=prod,ver=1,...
alpaca-test-1004512375-3rim5 ... app=alpaca,env=test,ver=2,...
bandicoot-prod-373860099-0tigp ... app=bandicoot,env=prod,ver=2,...
bandicoot-prod-373860099-k2wcf ... app=bandicoot,env=prod,ver=2,...
bandicoot-staging-1839769971-3ndv ... app=bandicoot,env=staging,ver=2,...
NOTE

You may see a new label that we haven’t seen yet: pod-template-hash. This label is
applied by the deployment so it can keep track of which pods were generated from
which template versions. This allows the deployment to manage updates in a clean way,
as will be covered in depth in Chapter 12.

If we only wanted to list pods that had the ver label set to 2 we could use the - -
selector flag:

$ kubectl get pods --selector="ver=2"



NAME READY STATUS RESTARTS  AGE

alpaca-test-1004512375-3rim5 1/1 Running 0 3m
bandicoot-prod-373860099-0tigp 1/1 Running 0 3m
bandicoot-prod-373860099-k2wcf 1/1 Running 0 3m
bandicoot-staging-1839769971-3ndv5 1/1 Running 0 3m

If we specify two selectors separated by a comma, only the objects that satisfy both
will be returned. This is a logical AND operation:

$ kubectl get pods --selector="app=bandicoot,ver=2"

NAME READY STATUS RESTARTS  AGE
bandicoot-prod-373860099-0tigp 1/1 Running 0 4m
bandicoot-prod-373860099-k2wcf 1/1 Running 0 4m
bandicoot-staging-1839769971-3ndv5 1/1 Running 0 4m

We can also ask if a label is one of a set of values. Here we ask for all pods where
the app label is set to alpaca or bandicoot (which will be all six pods):

$ kubectl get pods --selector="app in (alpaca,bandicoot)"

NAME READY STATUS RESTARTS AGE
alpaca-prod-3408831585-4nzfb 1/1 Running 0 6m
alpaca-prod-3408831585-kgala 1/1 Running 0 6m
alpaca-test-1004512375-3r1im5 1/1 Running 0 6m
bandicoot-prod-373860099-0tigp 1/1 Running 0 6m
bandicoot-prod-373860099-k2wcf 1/1 Running 0 6m
bandicoot-staging-1839769971-3ndv5 1/1 Running 0 6m

Finally, we can ask if a label 1s set at all. Here we are asking for all of the
deployments with the canary label set to anything:

$ kubectl get deployments --selector="canary"

NAME DESIRED CURRENT UP-TO-DATE  AVAILABLE AGE
alpaca-test 1 1 1 1 7m

There are also “negative” versions of each of these, as shown in Table 6-2.

Table 6-2. Selector operators

Operator Description



key=value key 1s set to value

key!=value key 1s not set to value

key in (valuel, value2) key 1s one of valuel or value2
key notin (valuel, value2) key is not one of valuel or value2
key key 1s set

lkey key 1s not set

Label Selectors in API Objects

When a Kubernetes object refers to a set of other Kubernetes objects, a label selector
1s used. Instead of a simple string as described in the previous section, a parsed
structure is used.

For historical reasons (Kubernetes doesn’t break API compatibility!), there are two
forms. Most objects support a newer, more powerful set of selector operators.

A selector of app=alpaca,ver in (1, 2) would be converted to this:

selector:
matchLabels:
app: alpaca
matchExpressions:
- {key: ver, operator: In, values: [1, 2]} @

© Compact YAML syntax. This is an item in a list (matchExpressions) that is a

map with three entries. The last entry (values) has a value that is a list with two
items.

All of the terms are evaluated as a logical AND. The only way to represent the !=
operator is to convert it to a NotIn expression with a single value.

The older form of specifying selectors (used in ReplicationControllers and

services) only supports the = operator. This is a simple set of key/value pairs that
must all match a target object to be selected.

The selector app=alpaca,ver=1 would be represented like this:



selector:
app: alpaca
ver: 1

Annotations

Annotations provide a place to store additional metadata for Kubernetes objects with
the sole purpose of assisting tools and libraries. They are a way for other programs
driving Kubernetes via an API to store some opaque data with an object. Annotations
can be used for the tool itself or to pass configuration information between external
systems.

While labels are used to identify and group objects, annotations are used to provide
extra information about where an object came from, how to use it, or policy around
that object. There is overlap, and it is a matter of taste as to when to use an
annotation or a label. When in doubt, add information to an object as an annotation
and promote it to a label if you find yourself wanting to use it in a selector.

Annotations are used to:
e Keep track of a “reason” for the latest update to an object.
e Communicate a specialized scheduling policy to a specialized scheduler.

e Extend data about the last tool to update the resource and how it was updated
(used for detecting changes by other tools and doing a smart merge).

¢ Build, release, or image information that isn’t appropriate for labels (may include
a Git hash, timestamp, PR number, etc.).

e Enable the Deployment object (Chapter 12) to keep track of ReplicaSets that it is
managing for rollouts.

e Provide extra data to enhance the visual quality or usability of a UI. For example,
objects could include a link to an icon (or a base64-encoded version of an icon).

e Prototype alpha functionality in Kubernetes (instead of creating a first-class API
field, the parameters for that functionality are instead encoded in an annotation).

Annotations are used in various places in Kubernetes, with the primary use case
being rolling deployments. During rolling deployments, annotations are used to track
rollout status and provide the necessary information required to roll back a



deployment to a previous state.

Users should avoid using the Kubernetes API server as a general-purpose database.
Annotations are good for small bits of data that are highly associated with a specific
resource. If you want to store data in Kubernetes but you don’t have an obvious
object to associate it with, consider storing that data in some other, more appropriate
database.

Defining Annotations

Annotation keys use the same format as label keys. However, because they are often
used to communicate information between tools, the “namespace” part of the key is
more important. Example keys include deployment.kubernetes.io/revision or
kubernetes.io/change-cause.

The value component of an annotation is a free-form string field. While this allows
maximum flexibility as users can store arbitrary data, because this is arbitrary text,
there is no validation of any format. For example, it is not uncommon for a JSON
document to be encoded as a string and stored in an annotation. It is important to
note that the Kubernetes server has no knowledge of the required format of
annotation values. If annotations are used to pass or store data, there is no guarantee
the data is valid. This can make tracking down errors more difficult.

Annotations are defined in the common metadata section in every Kubernetes
object:

metadata:
annotations:
example.com/icon-url: "https://example.com/icon.png"

Annotations are very convenient and provide powerful loose coupling. However,
they should be used judiciously to avoid an untyped mess of data.

Cleanup
It is easy to clean up all of the deployments that we started in this chapter:



$ kubectl delete deployments --all

If you want to be more selective you can use the - -selector flag to choose which
deployments to delete.

Summary

Labels are used to identify and optionally group objects in a Kubernetes cluster.
Labels are also used in selector queries to provide flexible runtime grouping of
objects such as pods.

Annotations provide object-scoped key/value storage of metadata that can be used by
automation tooling and client libraries. Annotations can also be used to hold
configuration data for external tools such as third-party schedulers and monitoring
tools.

Labels and annotations are key to understanding how key components in a
Kubernetes cluster work together to ensure the desired cluster state. Using labels and
annotations properly unlocks the true power of Kubernetes’s flexibility and provides
the starting point for building automation tools and deployment workflows.



Chapter 7. Service Discovery

Kubernetes is a very dynamic system. The system is involved in placing Pods on
nodes, making sure they are up and running, and rescheduling them as needed. There
are ways to automatically change the number of pods based on load (such as
horizontal pod autoscaling [see “Autoscaling a ReplicaSet”]). The API-driven nature
of the system encourages others to create higher and higher levels of automation.

While the dynamic nature of Kubernetes makes it easy to run a lot of things, it
creates problems when it comes to finding those things. Most of the traditional
network infrastructure wasn’t built for the level of dynamism that Kubernetes
presents.

What Is Service Discovery?

The general name for this class of problems and solutions is service discovery.
Service discovery tools help solve the problem of finding which processes are
listening at which addresses for which services. A good service discovery system
will enable users to resolve this information quickly and reliably. A good system is
also low-latency; clients are updated soon after the information associated with a
service changes. Finally, a good service discovery system can store a richer
definition of what that service is. For example, perhaps there are multiple ports
associated with the service.

The Domain Name System (DNS) is the traditional system of service discovery on
the internet. DNS is designed for relatively stable name resolution with wide and
efficient caching. It is a great system for the internet but falls short in the dynamic
world of Kubernetes.

Unfortunately, many systems (for example, Java, by default) look up a name in DNS
directly and never re-resolve. This can lead to clients caching stale mappings and
talking to the wrong IP. Even with short TTLs and well-behaved clients, there is a
natural delay between when a name resolution changes and the client notices. There
are natural limits to the amount and type of information that can be returned in a
typical DNS query, too. Things start to break past 20-30 A records for a single
name. SRV records solve some problems but are often very hard to use. Finally, the



way that clients handle multiple IPs in a DNS record is usually to take the first [P
address and rely on the DNS server to randomize or round-robin the order of records.
This is no substitute for more purpose-built load balancing.

The Service Object
Real service discovery in Kubernetes starts with a Service object.

A Service object is a way to create a named label selector. As we will see, the
Service object does some other nice things for us too.

Just as the kubectl run command is an easy way to create a Kubernetes
deployment, we can use kubectl expose to create a service. Let’s create some
deployments and services so we can see how they work:

$ kubectl run alpaca-prod \
--image=gcr.io/kuar-demo/kuard-amdé64:1 \
--replicas=3 \
--port=8080 \
--labels="ver=1,app=alpaca,env=prod"

$ kubectl expose deployment alpaca-prod

$ kubectl run bandicoot-prod \
--image=gcr.io/kuar-demo/kuard-amdé64:2 \
--replicas=2 \

--port=8080 \
--labels="ver=2,app=bandicoot,env=prod"
$ kubectl expose deployment bandicoot-prod

$ kubectl get services -o wide

NAME CLUSTER-IP ... PORT(S) ... SELECTOR

alpaca-prod 10.115.245.13 ... 8080/TCP ... app=alpaca,env=prod,ver=1
bandicoot-prod 10.115.242.3 ... 8080/TCP ... app=bandicoot,env=prod,ver=2
kubernetes 10.115.240.1 ... 443/TCP ... <none>

After running these commands, we have three services. The ones we just created are
alpaca-prod and bandicoot-prod. The kubernetes service is automatically
created for you so that you can find and talk to the Kubernetes API from within the
app.

If we look at the SELECTOR column, we see that the alpaca-prod service simply
gives a name to a selector and specifies which ports to talk to for that service. The



kubectl expose command will conveniently pull both the label selector and the
relevant ports (8080, in this case) from the deployment definition.

Furthermore, that service is assigned a new type of virtual IP called a cluster IP. This
1s a special IP address the system will load-balance across all of the pods that are
identified by the selector.

To interact with services, we are going to port-forward to one of the alpaca pods.
Start and leave this command running in a terminal window. You can see the port

forward working by accessing the alpaca pod at http.//localhost:48858:

$ ALPACA_POD=$(kubectl get pods -1 app=alpaca \
-0 jsonpath='{.items[0].metadata.name}')
$ kubectl port-forward $SALPACA_POD 48858:8080

Service DNS

Because the cluster IP is virtual it is stable and it is appropriate to give it a DNS
address. All of the issues around clients caching DNS results no longer apply. Within
a namespace, it is as easy as just using the service name to connect to one of the pods
identified by a service.

Kubernetes provides a DNS service exposed to Pods running in the cluster. This
Kubernetes DNS service was installed as a system component when the cluster was
first created. The DNS service is, itself, managed by Kubernetes and is a great
example of Kubernetes building on Kubernetes. The Kubernetes DNS service
provides DNS names for cluster IPs.

You can try this out by expanding the “DNS Resolver” section on the kuard server

status page. Query the A record for alpaca-prod. The output should look something
like this:

;3 opcode: QUERY, status: NOERROR, id: 12071
;3 flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: O, ADDITIONAL: 0

;5 QUESTION SECTION:
;alpaca-prod.default.svc.cluster.local. IN A

;3 ANSWER SECTION:
alpaca-prod.default.svc.cluster.local. 30 IN A 10.115.245.13
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The full DNS name here is alpaca-prod.default.svc.cluster.local.. Let’s
break this down:

alpaca-prod

The name of the service in question.

default

The namespace that this service is in.

svc:: Recognizing that this is a service. This allows Kubernetes to expose other types
of things as DNS in the future. cluster. local.

The base domain name for the cluster. This is the default and what you will see
for most clusters. Administrators may change this to allow unique DNS names
across multiple clusters.

When referring to a service in your own namespace you can just use the service
name (alpaca-prod). You can also refer to a service in another namespace with
alpaca-prod.default. And, of course, you can use the fully qualified service name
(alpaca-prod.default.svc.cluster.local.). Try each of these out in the “DNS
Resolver” section of kuard.

Readiness Checks

Oftentimes when an application first starts up it isn’t ready to handle requests. There
1s usually some amount of initialization that can take anywhere from under a second
to several minutes. One nice thing the Service object does is track which of your
pods are ready via a readiness check. Let’s modify our deployment to add a
readiness check:

$ kubectl edit deployment/alpaca-prod

This command will fetch the current version of the alpaca-prod deployment and
bring it up in an editor. After you save and quit your editor, it’ll then write the object
back to Kubernetes. This is a quick way to edit an object without saving it to a
YAML file.

Add the following section:



spec:
template:
spec:
containers:

name: alpaca-prod
readinessProbe:
httpGet:
path: /ready
port: 8080
periodSeconds: 2
initialDelaySeconds: 0
failureThreshold: 3
successThreshold: 1

This sets up the pods this deployment will create so that they will be checked for
readiness via an HTTP GET to /ready on port 8080. This check is done every 2
seconds starting as soon as the pod comes up. If three successive checks fail, then the
pod will be considered not ready. However, if only one check succeeds, then the pod
will again be considered ready.

Only ready pods are sent traffic.

Updating the deployment definition like this will delete and recreate the alpaca
pods. As such, we need to restart our port-forward command from earlier:

$ ALPACA_POD=$(kubectl get pods -1 app=alpaca \
-0 jsonpath='{.items[0].metadata.name}')
$ kubectl port-forward $SALPACA_POD 48858:8080

Open your browser to http://localhost: 48858 and you should see the debug page for

that instance of kuard. Expand the “Readiness Check” section. You should see this
page update every time there is a new readiness check from the system, which
should happen every 2 seconds.

In another terminal window, start a watch command on the endpoints for the
alpaca-prod service. Endpoints are a lower-level way of finding what a service is
sending traffic to and are covered later in this chapter. The - -watch option here
causes the kubectl command to hang around and output any updates. This is an
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easy way to see how a Kubernetes object changes over time:
$ kubectl get endpoints alpaca-prod --watch

Now go back to your browser and hit the “Fail” link for the readiness check. You
should see that the server is not returning 500s. After three of these this server is
removed from the list of endpoints for the service. Hit the “Succeed” link and notice
that after a single readiness check the endpoint is added back.

This readiness check is a way for an overloaded or sick server to signal to the system
that it doesn’t want to receive traffic anymore. This is a great way to implement
graceful shutdown. The server can signal that it no longer wants traffic, wait until
existing connections are closed, and then cleanly exit.

Press Control-C to exit out of both the port-forward and watch commands in your
terminals.

Looking Beyond the Cluster

So far, everything we’ve covered in this chapter has been about exposing services
inside of a cluster. Oftentimes the IPs for pods are only reachable from within the
cluster. At some point, we have to allow new traffic in!

The most portable way to do this is to use a feature called NodePorts, which enhance
a service even further. In addition to a cluster IP, the system picks a port (or the user
can specify one), and every node in the cluster then forwards traffic to that port to
the service.

With this feature, if you can reach any node in the cluster you can contact a service.
You use the NodePort without knowing where any of the Pods for that service are
running. This can be integrated with hardware or software load balancers to expose
the service further.

Try this out by modifying the alpaca-prod service:
$ kubectl edit service alpaca-prod

Change the spec. type field to NodePort. You can also do this when creating the
service via kubectl expose by specifying - - type=NodePort. The system will



assign a new NodePort:

$ kubectl describe service alpaca-prod

Name: alpaca-prod
Namespace: default
Labels: app=alpaca

env=prod

ver=1
Annotations: <none>
Selector: app=alpaca,env=prod,ver=1
Type: NodePort
IP: 10.115.245.13
Port: <unset> 8080/TCP
NodePort: <unset> 32711/TCP
Endpoints: 10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080
Session Affinity: None
No events.

Here we see that the system assigned port 32711 to this service. Now we can hit any
of our cluster nodes on that port to access the service. If you are sitting on the same
network, you can access it directly. If your cluster is in the cloud someplace, you can
use SSH tunneling with something like this:

S ssh <node> -L 8080:localhost:32711

Now if you open your browser to Attp.//localhost:8080 you will be connected to that
service. Each request that you send to the service will be randomly directed to one of
the Pods that implement the service. Reload the page a few times and you will see
that you are randomly assigned to different pods.

When you are done, exit out of the SSH session.

Cloud Integration

Finally, if you have support from the cloud that you are running on (and your cluster
is configured to take advantage of it) you can use the LoadBalancer type. This

builds on NodePorts by additionally configuring the cloud to create a new load
balancer and direct it at nodes in your cluster.

Edit the alpaca-prod service again (kubectl edit service alpaca-prod) and
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change spec.type to LoadBalancer.

If you do a kubectl get services right away you’ll see that the EXTERNAL-IP
column for alpaca-prod now says <pending>. Wait a bit and you should see a
public address assigned by your cloud. You can look in the console for your cloud
account and see the configuration work that Kubernetes did for you:

$ kubectl describe service alpaca-prod

Name: alpaca-prod
Namespace: default
Labels: app=alpaca
env=prod
ver=1
Selector: app=alpaca,env=prod,ver=1
Type: LoadBalancer
IP: 10.115.245.13
LoadBalancer Ingress: 104.196.248.204
Port: <unset> 8080/TCP
NodePort: <unset> 32711/TCP
Endpoints: 10.112.1.66:8080,10.112.2.104:8080,10.112.2.105:8080
Session Affinity: None
Events:
FirstSeen ... Reason Message
3m ... Type NodePort -> LoadBalancer
3m ... CreatinglLoadBalancer Creating load balancer
2m ... CreatedLoadBalancer Created load balancer

Here we see that we have an address of 104.196.248.204 now assigned to the
alpaca-prod service. Open up your browser and try!

This example is from a cluster launched and managed on the Google Cloud Platform

via GKE. However, the way a LoadBalancer is configured is specific to a cloud. In
addition, some clouds have DNS-based load balancers (e.g., AWS ELB). In this case
you’ll see a hostname here instead of an IP. Also, depending on the cloud provider, it
may still take a little while for the load balancer to be fully operational.

Advanced Details

Kubernetes is built to be an extensible system. As such, there are layers that allow



for more advanced integrations. Understanding the details of how a sophisticated
concept like services is implemented may help you troubleshoot or create more
advanced integrations. This section goes a bit below the surface.

Endpoints

Some applications (and the system itself) want to be able to use services without
using a cluster IP. This is done with another type of object called Endpoints. For
every Service object, Kubernetes creates a buddy Endpoints object that contains
the IP addresses for that service:

$ kubectl describe endpoints alpaca-prod

Name: alpaca-prod
Namespace: default
Labels: app=alpaca
env=prod
ver=1
Subsets:
Addresses: 10.112.1.54,10.112.2.84,10.112.2.85
NotReadyAddresses: <none>
Ports:
Name Port Protocol
<unset> 8080 TCP
No events.

To use a service, an advanced application can talk to the Kubernetes API directly to
look up endpoints and call them. The Kubernetes API even has the capability to
“watch” objects and be notified as soon as they change. In this way a client can react
immediately as soon as the IPs associated with a service change.

Let’s demonstrate this. In a terminal window, start the following command and leave
it running:

$ kubectl get endpoints alpaca-prod --watch
It will output the current state of the endpoint and then “hang™:

NAME ENDPOINTS AGE



alpaca-prod 10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080  1m

Now open up another terminal window and delete and recreate the deployment
backing alpaca-prod:

$ kubectl delete deployment alpaca-prod

$ kubectl run alpaca-prod \
--image=gcr.io/kuar-demo/kuard-amd64:1 \
--replicas=3 \
--port=8080 \
--labels="ver=1,app=alpaca,env=prod"

If you look back at the output from the watched endpoint, you will see that as you
deleted and re-created these pods, the output of the command reflected the most up-
to-date set of IP addresses associated with the service. Your output will look
something like this:

NAME ENDPOINTS AGE
alpaca-prod 10.112.1.54:8080,10.112.2.84:8080,10.112.2.85:8080 im
alpaca-prod 10.112.1.54:8080,10.112.2.84:8080 1m

alpaca-prod <none> im

alpaca-prod 10.112.2.90:8080 1m

alpaca-prod 10.112.1.57:8080,10.112.2.90:8080 1m

alpaca-prod 10.112.0.28:8080,10.112.1.57:8080,10.112.2.90:8080 im

The Endpoints object is great if you are writing new code that is built to run on
Kubernetes from the start. But most projects aren’t in this position! Most existing
systems are built to work with regular old IP addresses that don’t change that often.

Manual Service Discovery

Kubernetes services are built on top of label selectors over pods. That means that
you can use the Kubernetes API to do rudimentary service discovery without using a

Service object at all! Let’s demonstrate.

With kubectl (and via the API) we can easily see what IPs are assigned to each pod
in our example deployments:

$ kubectl get pods -o wide --show-labels



NAME ... IP

alpaca-prod-12334-87f8h ... 10.112.1.54 ...
alpaca-prod-12334-jssmh ... 10.112.2.84 ...
alpaca-prod-12334-tjp56 ... 10.112.2.85 ...
bandicoot-prod-5678-sbxzl ... 10.112.1.55 ...
bandicoot-prod-5678-x0dh8 ... 10.112.2.86 ...

. LABELS
app=alpaca,env=prod,ver=1
app=alpaca,env=prod,ver=1
app=alpaca,env=prod,ver=1
app=bandicoot,env=prod,ver=2
app=bandicoot,env=prod,ver=2

This is great, but what if you have a ton of pods? You’ll probably want to filter this
based on the labels applied as part of the deployment. Let’s do that for just the

alpaca app:

$ kubectl get pods -o wide --selector=app=alpaca,env=prod

NAME ... IP cee
alpaca-prod-3408831585-bpzdz ... 10.112.1.54 ...
alpaca-prod-3408831585-kncwt ... 10.112.2.84 ...
alpaca-prod-3408831585-19fsq ... 10.112.2.85 ...

At this point we have the basics of service discovery! We can always use labels to
identify the set of pods we are interested in, get all of the pods for those labels, and
dig out the IP address. But keeping the correct set of labels to use in sync can be

tricky. This is why the Service object was created.

kube-proxy and Cluster IPs

Cluster IPs are stable virtual IPs that load-balance traffic across all of the endpoints
in a service. This magic is performed by a component running on every node in the

cluster called the kube-proxy (Figure 7-1).
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Figure 7-1. Configuring and using a cluster IP

In Figure 7-1, the kube - proxy watches for new services in the cluster via the API
server. It then programs a set of iptables rules in the kernel of that host to rewrite
the destination of packets so they are directed at one of the endpoints for that service.
If the set of endpoints for a service changes (due to pods coming and going or due to
a failed readiness check) the set of iptables rules is rewritten.

The cluster IP itself is usually assigned by the API server as the service is created.
However, when creating the service, the user can specify a specific cluster IP. Once
set, the cluster IP cannot be modified without deleting and recreating the Service
object.

NOTE

The Kubernetes service address range is configured using the - -service-cluster-ip-
range flag on the kube-apiserver binary. The service address range should not
overlap with the IP subnets and ranges assigned to each Docker bridge or Kubernetes
node.

In addition, any explicit cluster IP requested must come from that range and not already
be in use.



Cluster IP Environment Variables

While most users should be using the DNS services to find cluster IPs, there are
some older mechanisms that may still be in use. One of these is injecting a set of
environment variables into pods as they start up.

To see this in action, let’s look at the console for the bandicoot instance of kuard.
Enter the following commands in your terminal:

$ BANDICOOT_POD=$(kubectl get pods -1 app=bandicoot \
-0 jsonpath='{.items[0].metadata.name}')
$ kubectl port-forward $BANDICOOT_POD 48858:8080

Now open your browser to http://localhost: 48858 to see the status page for this
server. Expand the “Environment” section and note the set of environment variables

for the alpaca service. The status page should show a table similar to Table 7-1.

Table 7-1. Service environment variables

Name Value
ALPACA_PROD_PORT tcp://10.115.245.13:8080
ALPACA_PROD_PORT_8080_TCP tcp://10.115.245.13:8080

ALPACA_PROD_PORT_8080_TCP_ADDR 10.115.245.13
ALPACA_PROD_PORT_8080_TCP_PORT 8080
ALPACA_PROD_PORT_8080_TCP_PROTO tcp
ALPACA_PROD_SERVICE_HOST 10.115.245.13

ALPACA_PROD_SERVICE_PORT 8080

The two main environment variables to use are ALPACA_PROD_SERVICE_HOST and

ALPACA_PROD_SERVICE_PORT. The other environment variables are created to be
compatible with (now deprecated) Docker link variables.

A problem with the environment variable approach is that it requires resources to be
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created in a specific order. The services must be created before the pods that
reference them. This can introduce quite a bit of complexity when deploying a set of
services that make up a larger application. In addition, using jus¢ environment
variables seems strange to many users. For this reason, DNS is probably a better
option.

Cleanup

Run the following commands to clean up all of the objects created in this chapter:

$ kubectl delete services,deployments -1 app

Summary

Kubernetes is a dynamic system that challenges traditional methods of naming and
connecting services over the network. The Service object provides a flexible and
powerful way to expose services both within the cluster and beyond. With the
techniques covered here you can connect services to each other and expose them
outside the cluster.

While using the dynamic service discovery mechanisms in Kubernetes introduces
some new concepts and may, at first, seem complex, understanding and adapting
these techniques is key to unlocking the power of Kubernetes. Once your application
can dynamically find services and react to the dynamic placement of those
applications, you are free to stop worrying about where things are running and when
they move. It is a critical piece of the puzzle to start to think about services in a
logical way and let Kubernetes take care of the details of container placement.



Chapter 8. ReplicaSets

Previously, we covered how to run individual containers as Pods. But these pods are
essentially one-off singletons. More often than not, you want multiple replicas of a
container running at a particular time. There are a variety of reasons for this type of
replication:

Redundancy

Multiple running instances mean failure can be tolerated.

Scale

Multiple running instances mean that more requests can be handled.

Sharding
Different replicas can handle different parts of a computation in parallel.

Of course, you could manually create multiple copies of a Pod using multiple
different (though largely similar) Pod manifests, but doing so is both tedious and
error-prone. Logically, a user managing a replicated set of Pods considers them as a
single entity to be defined and managed. This is precisely what a ReplicaSet is. A
ReplicaSet acts as a cluster-wide Pod manager, ensuring that the right types and
number of Pods are running at all times.

Because ReplicaSets make it easy to create and manage replicated sets of Pods, they
are the building blocks used to describe common application deployment patterns
and provide the underpinnings of self-healing for our applications at the
infrastructure level. Pods managed by ReplicaSets are automatically rescheduled
under certain failure conditions such as node failures and network partitions.

The easiest way to think of a ReplicaSet is that it combines a cookie cutter and a
desired of number of cookies into a single API object. When we define a ReplicaSet,
we define a specification for the Pods we want to create (the “cookie cutter”), and a
desired number of replicas. Additionally, we need to define a way of finding Pods
that the ReplicaSet should control. The actual act of managing the replicated Pods is
an example of a reconciliation loop. Such loops are fundamental to most of the
design and implementation of Kubernetes.



Reconciliation Loops

The central concept behind a reconciliation loop is the notion of desired state and
observed or current state. Desired state is the state you want. With a ReplicaSet it is
the desired number of replicas and the definition of the Pod to replicate. For
example, the desired state is that there are three replicas of a Pod running the kuard
server.

In contrast, current state is the currently observed state of the system. For example,
there are only two kuard Pods currently running.

The reconciliation loop is constantly running, observing the current state of the
world and taking action to try to make the observed state match the desired state. For
example, given the previous example, the reconciliation loop creates a new kuard
Pod in an effort to make the observed state match the desired state of three replicas.

There are many benefits to the reconciliation loop approach to managing state. It is
an inherently goal-driven, self-healing system, yet it can often be easily expressed in
a few lines of code.

As a concrete example of this, note that the reconciliation loop for ReplicaSets is a
single loop, and yet it handles both user actions to scale up or scale down the
ReplicaSet, as well as node failures or nodes rejoining the cluster after being absent.

Throughout the rest of the book we’ll see numerous examples of reconciliation loops
in action.

Relating Pods and ReplicaSets

One of the key themes that runs through Kubernetes is decoupling. In particular, it’s
important that all of the core concepts of Kubernetes are modular with respect to
each other and that they are swappable and replaceable with other components. In
this spirit, the relationship between ReplicaSets and Pods is loosely coupled. Though
ReplicaSets create and manage Pods, they do not own the Pods they create.
ReplicaSets use label queries to identify the set of Pods they should be managing.
They then use the exact same Pod API that you used directly in Chapter 5 to create
the Pods that they are managing. This notion of “coming in the front door” is another
central design concept in Kubernetes. In a similar decoupling, ReplicaSets that create
multiple Pods and the services that load-balance to those Pods are also totally



separate, decoupled API objects. In addition to supporting modularity, the
decoupling of Pods and ReplicaSets enables several important behaviors, discussed
in the following sections.

Adopting Existing Containers

Despite the value placed on declarative configuration of software, there are times
when it is easier to build something up imperatively. In particular, early on you may
be simply deploying a single Pod with a container image without a ReplicaSet
managing it. But at some point you may want to expand your singleton container
into a replicated service and create and manage an array of similar containers. You
may have even defined a load balancer that is serving traffic to that single Pod. If
ReplicaSets owned the Pods they created, then the only way to start replicating your
Pod would be to delete it and then relaunch it via a ReplicaSet. This might be
disruptive, as there would be a moment in time when there would be no copies of
your container running. However, because ReplicaSets are decoupled from the Pods
they manage, you can simply create a ReplicaSet that will “adopt” the existing Pod,
and scale out additional copies of those containers. In this way you can seamlessly
move from a single imperative Pod to a replicated set of Pods managed by a
ReplicaSet.

Quarantining Containers

Oftentimes, when a server misbehaves, Pod-level health checks will automatically
restart that Pod. But if your health checks are incomplete, a Pod can be misbehaving
but still be part of the replicated set. In these situations, while it would work to
simply kill the Pod, that would leave your developers with only logs to debug the
problem. Instead, you can modify the set of labels on the sick Pod. Doing so will
disassociate it from the ReplicaSet (and service) so that you can debug the Pod. The
ReplicaSet controller will notice that a Pod is missing and create a new copy, but
because the Pod is still running, it is available to developers for interactive
debugging, which is significantly more valuable than debugging from logs.

Designing with ReplicaSets

ReplicaSets are designed to represent a single, scalable microservice inside your
architecture. The key characteristic of ReplicaSets is that every Pod that is created by



the ReplicaSet controller is entirely homogeneous. Typically, these Pods are then
fronted by a Kubernetes service load balancer, which spreads traffic across the Pods
that make up the service. Generally speaking, ReplicaSets are designed for stateles
(or nearly stateless) services. The elements created by the ReplicaSet are
interchangeable; when a ReplicaSet is scaled down, an arbitrary Pod is selected for
deletion. Your application’s behavior shouldn’t change because of such a scale-down
operation.

ReplicaSet Spec

Like all concepts in Kubernetes, ReplicaSets are defined using a specification. All
ReplicaSets must have a unique name (defined using the metadata.name field), a
spec section that describes the number of Pods (replicas) that should be running
cluster-wide at a given time, and a Pod template that describes the Pod to be created
when the defined number of replicas is not met. Example 8-1 shows a minimal
ReplicaSet definition.

Example 8-1. kuard-rs.yaml

apiVersion: extensions/vibetal
kind: ReplicaSet
metadata:
name: kuard
spec:
replicas: 1
template:
metadata:
labels:
app: kuard
version: "2"
spec:
containers:
- name: kuard
image: "gcr.io/kuar-demo/kuard-amd64:2"

Pod Templates

As mentioned previously, when the number of Pods in the current state is less than
the number of Pods in the desired state, the ReplicaSet controller will create new
Pods. The Pods are created using a Pod template that is contained in the ReplicaSet
specification. The Pods are created in exactly the same manner as when you created



a Pod from a YAML file in previous chapters. But instead of using a file, the
Kubernetes ReplicaSet controller creates and submits a Pod manifest based on the
Pod template directly to the API server. The following shows an example of a Pod
template in a ReplicaSet:

template:
metadata:
labels:

app: helloworld

version: vi

spec:
containers:

- name: helloworld
image: kelseyhightower/helloworld:vi
ports:

- containerPort: 80

Labels

In any cluster of reasonable size, there are many different Pods running at any given
time—so how does the ReplicaSet reconciliation loop discover the set of Pods for a
particular ReplicaSet? ReplicaSets monitor cluster state using a set of Pod labels.
Labels are used to filter Pod listings and track Pods running within a cluster. When
ReplicaSets are initially created, the ReplicaSet fetches a Pod listing from the
Kubernetes API and filters the results by labels. Based on the number of Pods
returned by the query, the ReplicaSet deletes or creates Pods to meet the desired
number of replicas. The labels used for filtering are defined in the ReplicaSet spec
section and are the key to understanding how ReplicaSets work.

NOTE

The selector in the ReplicaSet spec should be a proper subset of the labels in the Pod
template.

Creating a ReplicaSet

ReplicaSets are created by submitting a ReplicaSet object to the Kubernetes API. In
this section we will create a ReplicaSet using a configuration file and the kubectl



apply command.

The ReplicaSet configuration file in Example 8-1 will ensure one copy of the
gcr.io/kuar-demo/kuard-amd64:1 container is running at a given time.

Use the kubectl apply command to submit the kuard ReplicaSet to the Kubernetes
API:

$ kubectl apply -f kuard-rs.yaml
replicaset "kuard" created

Once the kuard ReplicaSet has been accepted, the ReplicaSet controller will detect

there are no kuard Pods running that match the desired state, and a new kuard Pod
will be created based on the contents of the Pod template:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kuard-yvzgd 1/1 Running © 11s

Inspecting a ReplicaSet

As with Pods and other Kubernetes API objects, if you are interested in further
details about a ReplicaSet, the describe command will provide much more

information about its state. Here is an example of using describe to obtain the
details of the ReplicaSet we previously created:

$ kubectl describe rs kuard

Name: kuard

Namespace: default

Image(s): kuard:1.9.15
Selector: app=kuard,version=2
Labels: app=kuard,version=2
Replicas: 1 current / 1 desired

Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed
No volumes.

You can see the label selector for the ReplicaSet, as well as the state of all of the
replicas managed by the ReplicaSet.



Finding a ReplicaSet from a Pod

Sometimes you may wonder if a Pod is being managed by a ReplicaSet, and, if it is,
which ReplicaSet.

To enable this kind of discovery, the ReplicaSet controller adds an annotation to
every Pod that it creates. The key for the annotation is kubernetes.io/created-by.

If you run the following, look for the kubernetes.io/created-by entry in the
annotations section:

$ kubectl get pods <pod-name> -o yaml

If applicable, this will list the name of the ReplicaSet that is managing this Pod. Note
that such annotations are best-effort; they are only created when the Pod is created
by the ReplicaSet, and can be removed by a Kubernetes user at any time.

Finding a Set of Pods for a ReplicaSet

You can also determine the set of Pods managed by a ReplicaSet. First, you can get
the set of labels using the kubectl describe command. In the previous example,
the label selector was app=kuard,version=2. To find the Pods that match this
selector, use the - -selector flag or the shorthand - 1:

$ kubectl get pods -1 app=kuard,version=2

This is exactly the same query that the ReplicaSet executes to determine the current
number of Pods.

Scaling ReplicaSets

ReplicaSets are scaled up or down by updating the spec.replicas key on the
ReplicaSet object stored in Kubernetes. When a ReplicaSet is scaled up, new Pods
are submitted to the Kubernetes API using the Pod template defined on the
ReplicaSet.

Imperative Scaling with kubectl Scale



The easiest way to achieve this is using the scale command in kubectl. For
example, to scale up to four replicas you could run:

$ kubectl scale kuard --replicas=4

While such imperative commands are useful for demonstrations and quick reactions
to emergency situations (e.g., in response to a sudden increase in load), it is
important to also update any text-file configurations to match the number of replicas

that you set via the imperative scale command. The reason for this becomes
obvious when you consider the following scenario:

Alice is on call, when suddenly there is a large increase in load on the service she
is managing. Alice uses the +scale+ command to increase the number of servers
responding to requests to 10, and the situation is resolved. However, Alice forgets
to update the ReplicaSet configurations checked into source control. Several days
later, Bob is preparing the weekly rollouts. Bob edits the ReplicaSet
configurations stored in version control to use the new container image, but he
doesn’t notice that the number of replicas in the file is currently 5, not the 10 that
Alice set in response to the increased load. Bob proceeds with the rollout, which
both updates the container image and reduces the number of replicas by half,
causing an immediate overload or outage.

Hopefully, this illustrates the need to ensure that any imperative changes are
immediately followed by a declarative change in source control. Indeed, if the need
1s not acute, we generally recommend only making declarative changes as described
in the following section.

Declaratively Scaling with kubectl apply

In a declarative world, we make changes by editing the configuration file in version
control and then applying those changes to our cluster. To scale the kuard
ReplicaSet, edit the kuard-rs.yaml configuration file and set the replicas count to
3:

spec:
replicas: 3



In a multiuser setting, you would like to have a documented code review of this
change and eventually check the changes into version control. Either way, you can

then use the kubectl apply command to submit the updated kuard ReplicaSet to
the API server:

$ kubectl apply -f kuard-rs.yaml
replicaset "kuard" configured

Now that the updated kuard ReplicaSet is in place, the ReplicaSet controller will
detect that the number of desired Pods has changed and that it needs to take action to
realize that desired state. If you used the imperative scale command in the previous
section, the ReplicaSet controller will destroy one Pod to get the number to three.
Otherwise, it will submit two new Pods to the Kubernetes API using the Pod

template defined on the kuard ReplicaSet. Regardless, use the kubectl get pods
command to list the running kuard Pods. You should see output like the following:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
kuard-3a2sb  1/1 Running 0 26s
kuard-wuq9v  1/1 Running 0O 26s
kuard-yvzgd 1/1 Running 0 2m

Autoscaling a ReplicaSet

While there will be times when you want to have explicit control over the number of
replicas in a ReplicaSet, often you simply want to have “enough” replicas. The
definition varies depending on the needs of the containers in the ReplicaSet. For
example, with a web server like nginx, you may want to scale due to CPU usage. For
an in-memory cache, you may want to scale with memory consumption. In some
cases you may want to scale in response to custom application metrics. Kubernetes
can handle all of these scenarios via horizontal pod autoscaling (HPA).

NOTE

HPA requires the presence of the heapster Pod on your cluster. heapster keeps track
of metrics and provides an API for consuming metrics HPA uses when making scaling

decisions. Most installations of Kubernetes include heapster by default. You can
validate its presence by listing the Pods in the kube - system namespace:



$ kubectl get pods --namespace=kube-system

You should see a Pod named heapster somewhere in that list. If you do not see it,
autoscaling will not work correctly.

“Horizontal pod autoscaling” is kind of a mouthful, and you might wonder why it is
not simply called “autoscaling.” Kubernetes makes a distinction between horizontal
scaling, which involves creating additional replicas of a Pod, and vertical scaling,
which involves increasing the resources required for a particular Pod (e.g., increasing
the CPU required for the Pod). Vertical scaling is not currently implemented in
Kubernetes, but it is planned. Additionally, many solutions also enable cluster
autoscaling, where the number of machines in the cluster is scaled in response to
resource needs, but this solution is not covered here.

Autoscaling based on CPU

Scaling based on CPU usage is the most common use case for Pod autoscaling.
Generally it is most useful for request-based systems that consume CPU
proportionally to the number of requests they are receiving, while using a relatively
static amount of memory.

To scale a ReplicaSet, you can run a command like the following:
$ kubectl autoscale rs kuard --min=2 --max=5 --cpu-percent=80

This command creates an autoscaler that scales between two and five replicas with a
CPU threshold of 80%. To view, modify, or delete this resource you can use the

standard kubectl commands and the horizontalpodautoscalers resource.
horizontalpodautoscalers is quite a bit to type, but it can be shortened to hpa:

$ kubectl get hpa

Because of the decoupled nature of Kubernetes, there is no direct link between the
horizontal pod autoscaler and the ReplicaSet. While this is great for modularity and
composition, it also enables some antipatterns. In particular, it’s a bad idea to combine
both autoscaling and imperative or declarative management of the number of replicas. If



both you and an autoscaler are attempting to modify the number of replicas, it’s highly
likely that you will clash, resulting in unexpected behavior.

Deleting ReplicaSets

When a ReplicaSet set is no longer required it can be deleted using the kubectl

delete command. By default, this also deletes the Pods that are managed by the
ReplicaSet:

S kubectl delete rs kuard
replicaset "kuard" deleted

Running the kubectl get pods command shows that all the kuard Pods created by
the kuard ReplicaSet have also been deleted:

$ kubectl get pods

If you don’t want to delete the Pods that are being managed by the ReplicaSet you

can set the - -cascade flag to false to ensure only the ReplicaSet object is deleted
and not the Pods:

S kubectl delete rs kuard --cascade=false

Summary

Composing Pods with ReplicaSets provides the foundation for building robust
applications with automatic failover, and makes deploying those applications a
breeze by enabling scalable and sane deployment patterns. ReplicaSets should be
used for any Pod you care about, even if it is a single Pod! Some people even default
to using ReplicaSets instead of Pods. A typical cluster will have many ReplicaSets,
so apply liberally to the affected area.



Chapter 9. DaemonSets

ReplicaSets are generally about creating a service (e.g., a web server) with multiple
replicas for redundancy. But that is not the only reason you may want to replicate a
set of Pods within a cluster. Another reason to replicate a set of Pods is to schedule a
single Pod on every node within the cluster. Generally, the motivation for replicating
a Pod to every node is to land some sort of agent or daemon on each node, and the
Kubernetes object for achieving this is the DaemonSet.

A DaemonSet ensures a copy of a Pod is running across a set of nodes in a
Kubernetes cluster. DaemonSets are used to deploy system daemons such as log
collectors and monitoring agents, which typically must run on every node.
DaemonSets share similar functionality with ReplicaSets; both create Pods that are
expected to be long-running services and ensure that the desired state and the
observed state of the cluster match.

Given the similarities between DaemonSets and ReplicaSets, it’s important to
understand when to use one over the other. ReplicaSets should be used when your
application is completely decoupled from the node and you can run multiple copies
on a given node without special consideration. DaemonSets should be used when a
single copy of your application must run on all or a subset of the nodes in the cluster.

You should generally not use scheduling restrictions or other parameters to ensure
that Pods do not colocate on the same node. If you find yourself wanting a single
Pod per node, then a DaemonSet is the correct Kubernetes resource to use. Likewise,
if you find yourself building a homogeneous replicated service to serve user traffic,
then a ReplicaSet is probably the right Kubernetes resource to use.

DaemonSet Scheduler

By default a DaemonSet will create a copy of a Pod on every node unless a node
selector 1s used, which will limit eligible nodes to those with a matching set of
labels. DaemonSets determine which node a Pod will run on at Pod creation time by
specifying the nodeName field in the Pod spec. As a result, Pods created by
DaemonSets are ignored by the Kubernetes scheduler.



Like ReplicaSets, DaemonSets are managed by a reconciliation control loop that
measures the desired state (a Pod is present on all nodes) with the observed state (is
the Pod present on a particular node?). Given this information, the DaemonSet
controller creates a Pod on each node that doesn’t currently have a matching Pod.

If a new node is added to the cluster, then the DaemonSet controller notices that it is
missing a Pod and adds the Pod to the new node.

NOTE

DaemonSets and ReplicaSets are a great demonstration of the value of Kubernetes’s
decoupled architecture. It might seem that the right design would be for a ReplicaSet to
own the Pods it manages, and for Pods to be subresources of a ReplicaSet. Likewise, the
Pods managed by a DaemonSet would be subresources of that DaemonSet. However,
this kind of encapsulation would require that tools for dealing with Pods be written two
different times, one for DaemonSets and one for ReplicaSets. Instead, Kubernetes uses a
decoupled approach where Pods are top-level objects. This means that every tool you

have learned for introspecting Pods in the context of ReplicaSets (e.g., kubectl logs
<pod-name>) is equally applicable to Pods created by DaemonSets.

Creating DaemonSets

DaemonSets are created by submitting a DaemonSet configuration to the Kubernetes

API server. The following DaemonSet will create a fluentd logging agent on every
node in the target cluster (Example 9-1).

Example 9-1. fluentd.yaml

apiVersion: extensions/vibetal
kind: DaemonSet
metadata:
name: fluentd
namespace: kube-system
labels:
app: fluentd
spec:
template:
metadata:
labels:
app: fluentd
spec:



contailners:
- name: fluentd
image: fluent/fluentd:v0.14.10
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log
- name: varlibdockercontainers
mountPath: /var/lib/docker/containers
readOnly: true
terminationGracePeriodSeconds: 30
volumes:
- name: varlog
hostPath:
path: /var/log
- name: varlibdockercontainers
hostPath:
path: /var/lib/docker/containers

DaemonSets require a unique name across all DaemonSets in a given Kubernetes
namespace. Each DaemonSet must include a Pod template spec, which will be used
to create Pods as needed. This is where the similarities between ReplicaSets and
DaemonSets end. Unlike ReplicaSets, DaemonSets will create Pods on every node in
the cluster by default unless a node selector is used.

Once you have a valid DaemonSet configuration in place, you can use the kubectl

apply command to submit the DaemonSet to the Kubernetes API. In this section we
will create a DaemonSet to ensure the fluentd HTTP server is running on every node
in our cluster:

$ kubectl apply -f fluentd.yaml
daemonset "fluentd" created

Once the fluentd DaemonSet has been successfully submitted to the Kubernetes API,
you can query its current state using the kubectl describe command:

S kubectl describe daemonset fluentd
Name: fluentd



Image(s): fluent/fluentd:v0.14.10

Selector: app=fluentd
Node-Selector: <none>
Labels: app=fluentd

Desired Number of Nodes Scheduled: 3

Current Number of Nodes Scheduled: 3

Number of Nodes Misscheduled: 0

Pods Status: 3 Running / 0 Waiting / O Succeeded / 0 Failed

This output indicates a fluentd Pod was successfully deployed to all three nodes in

our cluster. We can verify this using the kubectl get pods command with the -o
flag to print the nodes where each fluentd Pod was assigned:

$ kubectl get pods -o wide

NAME AGE NODE

fluentd-1q6c6  13m kO-default-pool-35609c18-z7tb
fluentd-mwi7h  13m kO-default-pool-35609c18-ydae
fluentd-zr6l7  13m k0-default-pool-35609c18-pol3

With the fluentd DaemonSet in place, adding a new node to the cluster will result
in a fluentd Pod being deployed to that node automatically:

$ kubectl get pods -o wide
NAME AGE NODE
fluentd-1q6c6  13m kO-default-pool-35609c18-z7tb
fluentd-mwi7h  13m k0-default-pool-35609c18-ydae
fluentd-oipmg 43s k0-default-pool-35609c18-0xnl
fluentd-zr6l7  13m k0-default-pool-35609c18-pol3

This is exactly the behavior you want when managing logging daemons and other
cluster-wide services. No action was required from our end; this is how the
Kubernetes DaemonSet controller reconciles its observed state with our desired state.

Limiting DaemonSets to Specific Nodes

The most common use case for DaemonSets is to run a Pod across every node in a
Kubernetes cluster. However, there are some cases where you want to deploy a Pod
to only a subset of nodes. For example, maybe you have a workload that requires a
GPU or access to fast storage only available on a subset of nodes in your cluster. In



cases like these node labels can be used to tag specific nodes that meet workload
requirements.

Adding Labels to Nodes

The first step in limiting DaemonSets to specific nodes is to add the desired set of

labels to a subset of nodes. This can be achieved using the kubectl label
command.

The following command adds the ssd=true label to a single node:

$ kubectl label nodes kO-default-pool-35609c18-z7tb ssd=true
node "k0-default-pool-35609c18-z7tb" labeled

Just like with other Kubernetes resources, listing nodes without a label selector
returns all nodes in the cluster:

$ kubectl get nodes

NAME STATUS AGE
kO-default-pool-35609c18-0xnl  Ready 23m
kO-default-pool-35609c18-pol3  Ready 1d
kO-default-pool-35609c18-ydae Ready 1d

kO-default-pool-35609c18-z7tb  Ready 1d

Using a label selector we can filter nodes based on labels. To list only the nodes that
have the ssd label set to true, use the kubectl get nodes command with the - -
selector flag:

$ kubectl get nodes --selector ssd=true
NAME STATUS AGE
kO0-default-pool-35609c18-z7tb  Ready 1d

Node Selectors

Node selectors can be used to limit what nodes a Pod can run on in a given
Kubernetes cluster. Node selectors are defined as part of the Pod spec when creating
a DaemonSet. The following DaemonSet configuration limits nginx to running only

on nodes with the ssd=true label set (Example 9-2).

Example 9-2. nginx-fast-storage.yaml




apiVersion: extensions/vibetal
kind: "DaemonSet"
metadata:
labels:
app: nginx
ssd: "true"
name: nginx-fast-storage
spec:
template:
metadata:
labels:
app: nginx
ssd: "true"
spec:
nodeSelector:
ssd: "true"
contailners:
- name: nginx
image: nginx:1.10.0

Let’s see what happens when we submit the nginx-fast-storage DaemonSet to
the Kubernetes API:

$ kubectl apply -f nginx-fast-storage.yaml
daemonset "nginx-fast-storage" created

Since there 1s only one node with the ssd=true label, the nginx-fast-storage Pod
will only run on that node:

$ kubectl get pods -o wide
NAME STATUS NODE
nginx-fast-storage-7b90t Running kO-default-pool-35609c18-z7tb

Adding the ssd=true label to additional nodes will case the nginx-fast-storage
Pod to be deployed on those nodes. The inverse is also true: if a required label is
removed from a node, the Pod will be removed by the DaemonSet controller.

Removing labels from a node that are required by a DaemonSet’s node selector will
cause the Pod being managed by that DaemonSet to be removed from the node.



Updating a DaemonSet

DaemonSets are great for deploying services across an entire cluster, but what about
upgrades? Prior to Kubernetes 1.6, the only way to update Pods managed by a
DaemonSet was to update the DaemonSet and then manually delete each Pod that
was managed by the DaemonSet so that it would be re-created with the new
configuration. With the release of Kubernetes 1.6 DaemonSets gained an equivalent

to the Deployment object that manages a DaemonSet rollout inside the cluster.

Updating a DaemonSet by Deleting Individual Pods

If you are running a pre-1.6 version of Kubernetes, you can perform a rolling delete
of the Pods a DaemonSet manages using a for loop on your own machine to update
one DaemonSet Pod every 60 seconds:

PODS=$(kubectl get pods -o jsonpath -template='{.items[*].metadata.name}'
for x in $PODS; do

kubectl delete pods ${x}

sleep 60
done

An alternative, easier approach is to just delete the entire DaemonSet and create a
new DaemonSet with the updated configuration. However, this approach has a major
drawback—downtime. When a DaemonSet is deleted all Pods managed by that
DaemonSet will also be deleted. Depending on the size of your container images,
recreating a DaemonSet may push you outside of your SLA thresholds, so it might
be worth considering pulling updated container images across your cluster before
updating a DaemonSet.

Rolling Update of a DaemonSet

With Kubernetes 1.6, DaemonSets can now be rolled out using the same rolling
update strategy that deployments use. However, for reasons of backward

compatability, the current default update strategy is the delete method described in
the previous section. To set a DaemonSet to use the rolling update strategy, you need

to configure the update strategy using the spec.updateStrategy. type field. That
field should have the value RollingUpdate. When a DaemonSet has an update
strategy of RollingUpdate, any change to the spec. template field (or subfields) in



the DaemonSet will initiate a rolling update.

As with rolling updates of deployments (see Chapter 12), the rolling update strategy
gradually updates members of a DaemonSet until all of the Pods are running the new
configuration. There are two parameters that control the rolling update of a
DaemonSet:

e spec.minReadySeconds, which determines how long a Pod must be “ready”
before the rolling update proceeds to upgrade subsequent Pods

e spec.updateStrategy.rollingUpdate.maxUnavailable, which indicates how
many Pods may be simultaneously updated by the rolling update

You will likely want to set spec.minReadySeconds to a reasonably long value, for
example 30—60 seconds, to ensure that your Pod is truly healthy before the rollout
proceeds.

The setting for spec.updateStrategy.rollingUpdate.maxUnavailable is more
likely to be application-dependent. Setting it to 1 is a safe, general-purpose strategy,
but it also takes a while to complete the rollout (number of nodes X

maxReadySeconds). Increasing the maximum unavailability will make your rollout
move faster, but increases the “blast radius of a failed rollout. The characteristics of
your application and cluster environment dictate the relative values of speed versus

safety. A good approach might be to set maxUnavailable to 1 and only increase it if
users or administrators complain about DaemonSet rollout speed.

Once a rolling update has started, you can use the kubectl rollout commands to
see the current status of a DaemonSet rollout.

For example, kubectl rollout status daemonSets my-daemon-set will show
the current rollout status of a DaemonSet named my-daemon-set.

Deleting a DaemonSet

Deleting a DaemonSet is pretty straightforward using the kubectl delete
command. Just be sure to supply the correct name of the DaemonSet you would like
to delete:

$ kubectl delete -f fluentd.yaml



Deleting a DaemonSet will also delete all the Pods being managed by that DaemonSet.

Set the - -cascade flag to false to ensure only the DaemonSet is deleted and not the
Pods.

Summary

DaemonSets provide an easy-to-use abstraction for running a set of Pods on every
node in a Kubernetes cluster, or if the case requires it, on a subset of nodes based on
labels. The DaemonSet provides its own controller and scheduler to ensure key
services like monitoring agents are always up and running on the right nodes in your
cluster.

For some applications, you simply want to schedule a certain number of replicas;
you don’t really care where they run as long as they have sufficient resources and
distribution to operate reliably. However, there is a different class of applications,
like agents and monitoring applications, that need to be present on every machine in
a cluster to function properly. These DaemonSets aren’t really traditional serving
applications, but rather add additional capabilities and features to the Kubernetes
cluster itself. Because the DaemonSet is an active declarative object managed by a
controller, it makes it easy to declare your intent that an agent run on every machine
without explicitly placing it on every machine. This is especially useful in the
context of an autoscaled Kubernetes cluster where nodes may constantly be coming
and going without user intervention. In such cases, the DaemonSet automatically
adds the proper agents to each node as it is added to the cluster by the autoscaler.



Chapter 10. Jobs

So far we have focused on long-running processes such as databases and web
applications. These types of workloads run until either they are upgraded or the
service is no longer needed. While long-running processes make up the large
majority of workloads that run on a Kubernetes cluster, there is often a need to run

short-lived, one-off tasks. The Job object is made for handling these types of tasks.

A Job creates Pods that run until successful termination (i.e., exit with 0). In contrast,
a regular Pod will continually restart regardless of its exit code. Jobs are useful for
things you only want to do once, such as database migrations or batch jobs. If run as
a regular Pod, your database migration task would run in a loop, continually
repopulating the database after every exit.

In this chapter we explore the most common Job patterns afforded by Kubernetes.
We will also leverage these patterns in real-life scenarios.

The Job Object

The Job object is responsible for creating and managing pods defined in a template
in the Job specification. These pods generally run until successful completion. The

Job object coordinates running a number of pods in parallel.

If the Pod fails before a successful termination, the Job controller will create a new
Pod based on the Pod template in the Job specification. Given that Pods have to be
scheduled, there is a chance that your Job will not execute if the required resources
are not found by the scheduler. Also, due to the nature of distributed systems there is
a small chance, during certain failure scenarios, that duplicate pods will be created
for a specific task.

Job Patterns

Jobs are designed to manage batch-like workloads where work items are processed
by one or more Pods. By default each Job runs a single Pod once until successful
termination. This Job pattern is defined by two primary attributes of a Job, namely



the number of Job completions and the number of Pods to run in parallel. In the case
of the “run once until completion™ pattern, the completions and parallelism
parameters are set to 1.

Table 10-1 highlights Job patterns based on the combination of completions and
parallelism for a Job configuration.

Table 10-1. Job patterns

Type Use case Behavior completions parallelism
Dat A singl i

One shot a abgse single pod running once 1
migrations until successful termination

Parallel Multiple pods One or more POdS FUnTng
one or more times until

fixed processing a set of 1+ 1+

: . reaching a fixed
completions work in parallel .
completion count

Work Multip l.e pods One or more Pods running
queue: processing from a .
: once until successful 1 2+
parallel centralized work o
termination
Jobs queue

One Shot

One-shot Jobs provide a way to run a single Pod once until successful termination.
While this may sound like an easy task, there is some work involved in pulling this
off. First, a Pod must be created and submitted to the Kubernetes API. This 1s done
using a Pod template defined in the Job configuration. Once a Job is up and running,
the Pod backing the Job must be monitored for successful termination. A Job can fail
for any number of reasons including an application error, an uncaught exception
during runtime, or a node failure before the Job has a chance to complete. In all cases
the Job controller is responsible for recreating the Pod until a successful termination
occurs.

There are multiple ways to create a one-shot Job in Kubernetes. The easiest is to use
the kubectl command-line tool:

$ kubectl run -i oneshot \
--image=gcr.io/kuar-demo/kuard-amd64:1 \



--restart=0nFailure \

-- --keygen-enable \
--keygen-exit-on-complete \
--keygen-num-to-gen 10

(ID 0) Workload starting

(ID
(ID

10/10) Item done: SHA256:WCR8wWIGOFag84Bsa8f/9QHuKqF+OmENCADY
) Workload exiting

(ID 0 1/10) Item done: SHA256:nAsUsG54XoKRkJIwyN+0ShkUPKew3mwq70Cc
(ID ©® 2/10) Item done: SHA256:HVKX1ANns6SgF/er1lyo+ZCdnB8geFGt0/8
(ID 0 3/10) Item done: SHA256:1rjCLRov3mTTOPOIfsvUyhKRQ1TdGR8H1jg
(ID © 4/10) Item done: SHA256:nbQAIVY/yrhmEGk3Ui2sAHuxb/o6mY0OqRk
(ID 0 5/10) Item done: SHA256:CCpBoXNLXOMQVR2v38yqimXGAa/w2Tym+al
(ID ©® 6/10) Item done: SHA256:wEY2TTIDz4ATjcri1iimxavCzZzNjRmbOQp8
(ID 0 7/10) Item done: SHA256:t3]1SrCt7sQweBgqG5CrbMoBulwk41fDWiTI
(ID ©® 8/10) Item done: SHA256:E84/Vze7KKyjCh90Zh02MkXJGoty9PhaCec
(ID 0 9/10) Item done: SHA256:UOmYex79qqbI1MhcIfG4hDnGKonlsij2k3s

(0]

0

There are some things to note here:

e The -1 option to kubectl indicates that this is an interactive command. kubectl
will wait until the Job is running and then show the log output from the first (and
in this case only) pod in the Job.

e --restart=0nFailure is the option that tells kubectl to create a Job object.

o All of the options after - - are command-line arguments to the container image.

These instruct our test server (kuard) to generate 10 4,096-bit SSH keys and then
exit.

¢ Your output may not match this exactly. kubectl often misses the first couple of
lines of output with the -1 option.

After the Job has completed, the Job object and related Pod are still around. This is
so that you can inspect the log output. Note that this Job won’t show up in kubectl

get jobs unless you pass the -a flag. Without this flag kubectl hides completed
Jobs. Delete the Job before continuing:

$ kubectl delete jobs oneshot

The other option for creating a one-shot Job is using a configuration file, as shown in



Example 10-1.
Example 10-1. job-oneshot.yaml

apiVersion: batch/v1
kind: Job
metadata:
name: oneshot
labels:
chapter: jobs
spec:
template:
metadata:
labels:
chapter: jobs
spec:
containers:
- name: kuard
image: gcr.io/kuar-demo/kuard-amdé64:1
imagePullPolicy: Always
args:
- "--keygen-enable"
- "--keygen-exit-on-complete"
- "--keygen-num-to-gen=10"
restartPolicy: OnFailure

Submit the job using the kubectl apply command:

$ kubectl apply -f job-oneshot.yaml
job "oneshot" created

Then describe the oneshot job:

$ kubectl describe jobs oneshot

Name: oneshot

Namespace: default

Image(s): gcr.io/kuar-demo/kuard-amd64:1

Selector: controller-uid=cf87484b-e664-11e6-8222-42010a8a007b
Parallelism: 1

Completions: 1

Start Time: Sun, 29 Jan 2017 12:52:13 -0800

Labels: Job=oneshot

Pods Statuses: © Running / 1 Succeeded / 0 Failed
No volumes.



Events:

.. SuccessfulCreate

.. Reason

Message

Created pod: oneshot-4kfdt

You can view the results of the Job by looking at the logs of the pod that was
created:

$ kubectl logs oneshot-4kfdt

Serving on :8080
0) Workload starting

(ID
(ID
(ID
(ID
(ID
(ID
(ID
(ID
(ID
(ID
(ID
(ID

0

0
0
0
0
0
0
0
0
0
0

1/10)
2/10)
3/10)
4/10)
5/10)
6/10)
7/10)
8/10)
9/10)

Item
Item
Item
Item
Item
Item
Item
Item
Item

done:
done:
done:
done:
done:
done:
done:
done:
done:

SHA256:

SHA256
SHA256

SHA256

+r6b4W81DbE jXxMcD3LHIU+EIGNLEzbpxITKN8IghkPI

:mzHewajaY1KA8V1uSLONNMk9fDE5zdn7vvBS5Ne8AXM
: TRtEQHff1ImwkgnNyGgQm/IvXNykSBIg8c03h0g3onE
SHA256:
SHA256:
SHA256:
SHA256:
SHA256:

tSwPYH/J34711/mgqTxRRdeZc0azEtgZ1A8A3/HWbro
IP8XtguJ6GbWwLHqjKecVfdS96B17nn021I/TNc1j9k
ZfNxdQvuST/6ZzEVkyxdRG98p73c/5TMI99SEbPeRWfc
tH+CN1/IUL/HUuKdMsq2XEmDQ8oAvmhMO6Iwj8ZEQ ;0
3GfsUaALVEHQcGNLBOu4Qd1zqqqJ8j73815r+I5XwVI

: SWVAL /XE1HS IXwLUT2 FHFOSCKM2g3XH3sVENbgskCXw

10/10) Item done: SHA256:bPqqOonwSbjzLqe9ZuVRmZkz+DBjaNTZ9HwWmQhbdWLI

) Workload exiting

Congratulations, your job has run successfully!

NOTE

You may have noticed that we didn’t specify any labels when creating the Job object.

Like with other controllers (DaemonSet, ReplicaSets, deployments, etc.) that use labels

to identify a set of Pods, unexpected behaviors can happen if a pod is reused across
objects.

Because Jobs have a finite beginning and ending, it is common for users to create many
of them. This makes picking unique labels more difficult and more critical. For this

reason, the Job object will automatically pick a unique label and use it to identify the
pods it creates. In advanced scenarios (such as swapping out a running Job without
killing the pods it is managing) users can choose to turn off this automatic behavior and
manually specify labels and selectors.



Pod failure

We just saw how a Job can complete successfully. But what happens if something
fails? Let’s try that out and see what happens.

Let’s modify the arguments to kuard in our configuration file to cause it to fail out
with a nonzero exit code after generating three keys, as shown in Example 10-2.

Example 10-2. job-oneshot-failurel.yaml

spec:
template:
spec:
contailners:

args:
- "--keygen-enable"
- "--keygen-exit-on-complete"

- "--keygen-exit-code=1"
- "--keygen-num-to-gen=3"

Now launch this with kubectl apply -f jobs-oneshot-failurel.yaml. Let it
run for a bit and then look at the pod status:

$ kubectl get pod -a -1 job-name=oneshot

NAME READY STATUS RESTARTS AGE
oneshot-3ddked 0/1 CrashLoopBackoff 4 3m

Here we see that the same Pod has restarted four times. Kubernetes 1s in

CrashLoopBackOff for this Pod. It is not uncommon to have a bug someplace that
causes a program to crash as soon as it starts. In that case, Kubernetes will wait a bit
before restarting the pod to avoid a crash loop eating resources on the node. This is

all handled local to the node by the kubelet without the Job being involved at all.

Kill the Job (kubectl delete jobs oneshot), and let’s try something else. Modify
the config file again and change the restartPolicy from OnFailure to Never.
Launch this with kubectl apply -f jobs-oneshot-failure2.yaml.

If we let this run for a bit and then look at related pods we’ll find something
interesting:



$ kubectl get pod -1 job-name=oneshot -a

NAME READY STATUS RESTARTS AGE oneshot-0wm49 0/1
Error 0 1m oneshot-6h9s2 0/1 Error 0 39s
oneshot-hkzw® 1/1 Running 0 6s oneshot-k5swz 0/1

Error 0 28s oneshot-mirdw 0/1 Error 0 19s
oneshot-x157b 0/1 Error 0 57s

What we see is that we have multiple pods here that have errored out. By setting
restartPolicy: Never we are telling the kubelet not to restart the Pod on failure,

but rather just declare the Pod as failed. The Job object then notices and creates a
replacement Pod. If you aren’t careful, this’ll create a lot of “junk” in your cluster.

For this reason, we suggest you use restartPolicy: OnFailure so failed Pods are
rerun in place.

Clean this up with kubectl delete jobs oneshot.

So far we’ve seen a program fail by exiting with a nonzero exit code. But workers
can fail in other ways. Specifically, they can get stuck and not make any forward
progress. To help cover this case, you can use liveness probes with Jobs. If the
liveness probe policy determines that a Pod is dead, it’1l be restarted/replaced for
you.

Parallelism

Generating keys can be slow. Let’s start a bunch of workers together to make key
generation faster. We’re going to use a combination of the completions and
parallelism parameters. Our goal is to generate 100 keys by having 10 runs of
kuard with each run generating 10 keys. But we don’t want to swamp our cluster, so
we’ll limit ourselves to only five pods at a time.

This translates to setting completions to 10 and parallelismto 5. The config is
shown in Example 10-2.

Example 10-3. job-parallel.yaml

apiVersion: batch/v1
kind: Job
metadata:
name: parallel
labels:
chapter: jobs



spec:
parallelism: 5
completions: 10
template:
metadata:
labels:
chapter: jobs
spec:
containers:
- name: kuard
image: gcr.io/kuar-demo/kuard-amdé64:1
imagePullPolicy: Always
args:
- "--keygen-enable"
- "--keygen-exit-on-complete"
- "--keygen-num-to-gen=10"
restartPolicy: OnFailure

Start it up:

$ kubectl apply -f job-parallel.yaml
job "parallel" created

Now watch as the pods come up, do their thing, and exit. New pods are created until

10 have completed altogether. Here we use the - -watch flag to have kubectl stay
around and list changes as they happen:

$ kubectl get pods -w

NAME READY STATUS RESTARTS AGE
parallel-55tlv 1/1 Running 0 5s
parallel-5s7s9 1/1 Running 0 5s
parallel-jp7bj 1/1 Running 0 5s
parallel-lssmn 1/1 Running 0 5s
parallel-gxcxp 1/1 Running 0 5s
NAME READY STATUS RESTARTS AGE
parallel-jp7bj 0/1 Completed 0 26s
parallel-tzp9n 0/1 Pending 0 0s
parallel-tzp9n 0/1 Pending 0 0s
parallel-tzp9n 0/1 ContainerCreating 0 1s
parallel-tzpon 1/1 Running 0 1s
parallel-tzp9n 0/1 Completed © 48s
parallel-xikmr 0/1 Pending 0 0s
parallel-xikmr 0/1 Pending 0 0s

parallel-xikmr 0/1 ContainerCreating 0 0s



parallel-xikmr 1/1 Running © 1s

parallel-5s7s9 0/1 Completed 0 im
parallel-tprfj 0/1 Pending 0 0s
parallel-tprfj 0/1 Pending 0 0s
parallel-tprfj 0/1 ContainerCreating 0 0s
parallel-tprfj 1/1 Running 0 2s
parallel-xikmr 0/1 Completed © 52s
parallel-bgvz5 0/1 Pending 0 0s
parallel-bgvz5 0/1 Pending 0 0s
parallel-bgvz5 0/1 ContainerCreating 0 0s
parallel-bgvz5 1/1 Running © 2s
parallel-gxcxp 0/1 Completed 0 2m
parallel-xplw2 0/1 Pending 0 1s
parallel-xplw2 0/1 Pending 0 1s
parallel-xplw2 0/1 ContainerCreating 0 1s
parallel-xplw2 1/1 Running 0O 3s
parallel-bgvz5 0/1 Completed 0 40s
parallel-55tlv 0/1 Completed 0 2m
parallel-lssmn 0/1 Completed © 2m

Feel free to poke around at the completed Jobs and check out their logs to see the
fingerprints of the keys they generated. Clean up by deleting the finished Job object
with kubectl delete job parallel.

Work Queues

A common use case for Jobs is to process work from a work queue. In this scenario,
some task creates a number of work items and publishes them to a work queue. A
worker Job can be run to process each work item until the work queue is empty

(Figure 10-1).

Producer Consumer

Figure 10-1. Parallel jobs



Starting a work queue

We start by launching a centralized work queue service. kuard has a simple

memory-based work queue system built in. We will start an instance of kuard to act
as a coordinator for all the work to be done.

Create a simple ReplicaSet to manage a singleton work queue daemon. We are using
a ReplicaSet to ensure that a new Pod will get created in the face of machine failure,
as shown in Example 10-4.

Example 10-4. rs-queue.yaml

apiVersion: extensions/vibetal
kind: ReplicaSet
metadata:
labels:
app: work-queue
component: queue
chapter: jobs
name: queue
spec:
replicas: 1
template:
metadata:
labels:
app: work-queue
component: queue
chapter: jobs
spec:
containers:
- name: queue
image: "gcr.io/kuar-demo/kuard-amd64:1"
imagePullPolicy: Always

Run the work queue with the following command:
$ kubectl apply -f rs-queue.yaml

At this point the work queue daemon should be up and running. Let’s use port
forwarding to connect to it. Leave this command running in a terminal window:

$ QUEUE_POD=$(kubectl get pods -1 app=work-queue,component=queue \
-0 jsonpath='{.items[0].metadata.name}')

$ kubectl port-forward $QUEUE_POD 8080:8080

Forwarding from 127.0.0.1:8080 -> 8080



Forwarding from [::1]:8080 -> 8080

You can open your browser to Attp.//localhost:8080 and see the kuard interface.
Switch to the “MemQ Server” tab to keep an eye on what is going on.

With the work queue server in place, we should expose it using a service. This will
make it easy for producers and consumers to locate the work queue via DNS, as
Example 10-5 shows.

Example 10-5. service-queue.yaml

apiVersion: vi1
kind: Service
metadata:

labels:
app: work-queue
component: queue
chapter: jobs

name: queue

spec:

ports:

- port: 8080
protocol: TCP
targetPort: 8080

selector:
app: work-queue
component: queue

Create the queue service with kubectl:

$ kubectl apply -f service-queue.yaml
service "queue" created

Loading up the queue

We are now ready to put a bunch of work items in the queue. For the sake of
simplicity we’ll just use curl to drive the API for the work queue server and insert a
bunch of work items. curl will communicate to the work queue through the
kubectl port-forward we set up earlier, as shown in Example 10-6.

Example 10-6. load-queue.sh

# Create a work queue called 'keygen'
curl -X PUT localhost:8080/memq/server/queues/keygen


http://localhost:8080

# Create 100 work items and load up the queue.
for 1 in work-item-{0..99}; do

curl -X POST localhost:8080/memq/server/queues/keygen/enqueue \
_d ll$_‘LII
done

Run these commands, and you should see 100 JSON objects output to your terminal
with a unique message identifier for each work item. You can confirm the status of
the queue by looking at the “MemQ Server” tab in the UI, or you can ask the work
queue API directly:

$ curl 127.0.0.1:8080/memq/server/stats

{
"kind": "stats",
"queues": [
{
"depth": 100,
"dequeued": 0,
"drained": 0,
"enqueued": 100,
"name": "keygen"
}
]
}

Now we are ready to kick off a Job to consume the work queue until it’s empty.

Creating the consumer job

This is where things get interesting! kuard is also able to act in consumer mode.
Here we set it up to draw work items from the work queue, create a key, and then
exit once the queue is empty, as shown in Example 10-7.

Example 10-7. job-consumers.yaml

apiVersion: batch/v1
kind: Job
metadata:
labels:
app: message-queue
component: consumer
chapter: jobs
name: consumers
spec:
parallelism: 5



template:
metadata:
labels:
app: message-queue
component: consumer
chapter: jobs
spec:
containers:
- name: worker
image: "gcr.io/kuar-demo/kuard-amd64:1"
imagePullPolicy: Always
args:
- "--keygen-enable"
- "--keygen-exit-on-complete"
- "--keygen-memg-server=http://queue:8080/memqg/server"
- "--keygen-memqg-queue=keygen"
restartPolicy: OnFailure

We are telling the Job to start up five pods in parallel. As the completions
parameter is unset, we put the Job into a worker pool mode. Once the first pod exits
with a zero exit code, the Job will start winding down and will not start any new
Pods. This means that none of the workers should exit until the work is done and
they are all in the process of finishing up.

Create the consumers Job:

$ kubectl apply -f job-consumers.yaml
job "consumers" created

Once the Job has been created you can view the pods backing the Job:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
queue-43s87 1/1 Running 0 5m
consumers-6wjxc 1/1 Running 0 2m
consumers-715mh  1/1 Running 0O 2m
consumers-hvz42 1/1 Running 0O 2m
consumers-pc8hr  1/1 Running 0O 2m
consumers-w20cc 1/1 Running 0O 2m

Note there are five pods running in parallel. These pods will continue to run until the
work queue 1s empty. You can watch as it happens in the UI on the work queue

server. As the queue empties, the consumer pods will exit cleanly and the consumers



Job will be considered complete.

Cleaning up

Using labels we can clean up all of the stuff we created in this section:

$ kubectl delete rs,svc,job -1 chapter=jobs

Summary

On a single cluster, Kubernetes can handle both long-running workloads such as web
applications and short-lived workloads such as batch jobs. The Job abstraction
allows you to model batch job patterns ranging from simple one-time tasks to
parallel jobs that process many items until work has been exhausted.

Jobs are a low-level primitive and can be used directly for simple workloads.
However, Kubernetes is built from the ground up to be extensible by higher-level
objects. Jobs are no exception; they can easily be used by higher-level orchestration
systems to take on more complex tasks.



Chapter 11. ConfigMaps and
Secrets

It is a good practice to make container images as reusable as possible. The same
image should be able to be used for development, staging, and production. It is even
better if the same image is general purpose enough to be used across applications and
services. Testing and versioning get riskier and more complicated if images need to
be recreated for each new environment. But then how do we specialize the use of
that image at runtime?

This is where ConfigMaps and secrets come into play. ConfigMaps are used to
provide configuration information for workloads. This can either be fine-grained
information (a short string) or a composite value in the form of a file. Secrets are
similar to ConfigMaps but focused on making sensitive information available to the
workload. They can be used for things like credentials or TLS certificates.

ConfigMaps

One way to think of a ConfigMap is as a Kubernetes object that defines a small
filesystem. Another way is as a set of variables that can be used when defining the
environment or command line for your containers. The key thing is that the
ConfigMap is combined with the Pod right before it is run. This means that the
container image and the pod definition itself can be reused across many apps by just
changing the ConfigMap that is used.

Creating ConfigMaps

Let’s jump right in and create a ConfigMap. Like many objects in Kubernetes, you
can create these in an immediate, imperative way or you can create them from a
manifest on disk. We’ll start with the imperative method.

First, suppose we have a file on disk (called my-config.txt) that we want to make
available to the Pod in question, as shown in Example 11-1.

Example 11-1. my-config.txt




# This is a sample config file that I might use to configure an application
parameterl = valuel
parameter2 = value2

Next, let’s create a ConfigMap with that file. We’ll also add a couple of simple
key/value pairs here. These are referred to as literal values on the command line:

$ kubectl create configmap my-config \
--from-file=my-config.txt \
--from-literal=extra-param=extra-value \
--from-literal=another-param=another-value

The equivalent YAML for the ConfigMap object we just created is:

$ kubectl get configmaps my-config -o yaml

apiVersion: vi
data:
another-param: another-value
extra-param: extra-value
my-config.txt: |
# This 1s a sample config file that I might use to configure an
application
parameterl
parameter?2
kind: ConfigMap
metadata:
creationTimestamp:
name: my-config
namespace: default
resourceVersion: "13556"
selfLink: /api/vil/namespaces/default/configmaps/my-config
uid: 3641c553-f7de-11e6-98c9-06135271a273

valuel
value2

As you can see, the ConfigMap is really just some key/value pairs stored in an
object. The interesting stuff happens when you try to use a ConfigMap.

Using a ConfigMap
There are three main ways to use a ConfigMap:

Filesystem



You can mount a ConfigMap into a Pod. A file is created for each entry based on
the key name. The contents of that file are set to the value.

Environment variable

A ConfigMap can be used to dynamically set the value of an environment
variable.

Command-line argument

Kubernetes supports dynamically creating the command line for a container
based on ConfigMap values.

Let’s create a manifest for kuard that pulls all of these together, as shown in
Example 11-2.

Example 11-2. kuard-config.yaml

apiVersion: vi1
kind: Pod
metadata:
name: kuard-config
spec:
containers:

- name: test-container
image: gcr.io/kuar-demo/kuard-amd64:1
imagePullPolicy: Always
command:

- "/kuard"
- "$(EXTRA_PARAM)"
env:
- name: ANOTHER_PARAM
valueFrom:
configMapKeyRef:
name: my-config
key: another-param
- name: EXTRA_PARAM
valueFrom:
configMapKeyRef:
name: my-config
key: extra-param
volumeMounts:
- name: config-volume
mountPath: /config
volumes:
- name: config-volume



configMap:
name: my-config
restartPolicy: Never

For the filesystem method, we create a new volume inside the pod and give it the

name config-volume. We then define this volume to be a ConfigMap volume and
point at the ConfigMap to mount. We have to specify where this gets mounted into

the kuard container with a volumeMount. In this case we are mounting it at
/config.

Environment variables are specified with a special valueFrom member. This
references the ConfigMap and the data key to use within that ConfigMap.

Command-line arguments build on environment variables. Kubernetes will perform
the correct substitution with a special $(<env-var-name>) syntax.

Run this Pod and let’s port-forward to examine how the app sees the world:

$ kubectl apply -f kuard-config.yaml
$ kubectl port-forward kuard-config 8080

Now point your browser at Attp://localhost:8080. We can look at how we’ve injected
configuration values into the program in all three ways.

Click on the “Server Env” tab on the left. This will show the command line that the
app was launched with along with its environment, as shown in Figure 11-1.


http://localhost:8080

® © ® [ KuARDemo x Guest

< C @ localhost:8080/-/env

@ WARNING: This server may expose sensitive and secret information. Be careful.

kKuard—-config

Demo application version v0.4-3-g9d924e1-1
Serving on 192.168.8.195

Request Details Command Line
/kuard extra-value

Server Env
Key Value
Liveness Probe
ANOTHER_PARAM another-value
Readiness Probe
EXTRA_PARAM extra-value
DNS Query HOME 74
KeyGen Workload HOSTNAME kuard-config
KUBERNETES_PORT tcp://10.96.0.1:443
MemQ Server
KUBERNETES_PORT_443_TCP tcp://10.96.0.1:443

File system browser BERNETES_PORT_443_TCP_ADDR  10.96.0.1
KUBERNETES_PORT_443_TCP_PORT 443
KUBERNETES_PORT_443_TCP_PROTO tcp
KUBERNETES_SERVICE_HOST 10.96.0.1
KUBERNETES_SERVICE_PORT 443
KUBERNETES_SERVICE_PORT_HTTPS 443

PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Figure 11-1. kuard showing its environment

Here we can see that we’ve added two environment variables (ANOTHER_PARAM and
EXTRA_PARAM) whose values are set via the ConfigMap. Furthermore, we’ve added
an argument to the command line of kuard based on the EXTRA_PARAM value.

Next, click on the “File system browser” tab (Figure 11-2). This lets you explore the
filesystem as the application sees it. You should see an entry called /config. This is
a volume created based on our ConfigMap. If you navigate into that, you’ll see that a
file has been created for each entry of the ConfigMap. You’ll also see some hidden
files (prepended with ..) that are used to do a clean swap of new values when the
ConfigMap is updated.



[ localhost:8080/fs/config/ X Guest

& C' @ localhost:8080/fs/config/

..2982 21 02 03_30_11.119605996/
..data

another—-param

extra-param

my-config.txt

Figure 11-2. The /config directory as seen through kuard

Secrets

While ConfigMaps are great for most configuration data, there is certain data that is
extra-sensitive. This can include passwords, security tokens, or other types of private
keys. Collectively, we call this type of data “secrets.” Kubernetes has native support

for storing and handling this data with care.

Secrets enable container images to be created without bundling sensitive data. This
allows containers to remain portable across environments. Secrets are exposed to
pods via explicit declaration in pod manifests and the Kubernetes API. In this way
the Kubernetes secrets API provides an application-centric mechanism for exposing



sensitive configuration information to applications in a way that’s easy to audit and
leverages native OS isolation primitives.

Depending on your requirements, Kubernetes secrets may not be secure enough for you.
As of Kubernetes version 1.6, anyone with root access on any node has access to all
secrets in the cluster. While Kubernetes utilizes native OS containerization primitives to
only expose Pods to secrets they are supposed to see, isolation between nodes is still a
work in progress.

Kubernetes version 1.7 improves this situation quite a bit. When properly configured, it
both encrypts stored secrets and restricts the secrets that each individual node has access
to.

The remainder of this section will explore how to create and manage Kubernetes
secrets, and also lay out best practices for exposing secrets to pods that require them.

Creating Secrets

Secrets are created using the Kubernetes API or the kubectl command-line tool.
Secrets hold one or more data elements as a collection of key/value pairs.

In this section we will create a secret to store a TLS key and certificate for the kuard
application that meets the storage requirements listed above.

NOTE

The kuard container image does not bundle a TLS certificate or key. This allows the
kuard container to remain portable across environments and distributable through public
Docker repositories.

The first step in creating a secret is to obtain the raw data we want to store. The TLS

key and certificate for the kuard application can be downloaded by running the
following commands (please don’t use these certificates outside of this example):

$ curl -0 https://storage.googleapis.com/kuar-demo/kuard.crt



$ curl -0 https://storage.googleapis.com/kuar-demo/kuard.key

With the kuard.crt and kuard.key files stored locally, we are ready to create a secret.
Create a secret named kuard-tls using the create secret command:

$ kubectl create secret generic kuard-tls \
--from-file=kuard.crt \
--from-file=kuard.key

The kuard-tls secret has been created with two data elements. Run the following
command to get details:

$ kubectl describe secrets kuard-tls

Name: kuard-tls
Namespace: default
Labels: <none>

Annotations: <none>

Type: Opaque
Data

kuard.crt: 1050 bytes
kuard.key: 1679 bytes

With the kuard-tls secret in place, we can consume it from a pod by using a secrets
volume.

Consuming Secrets

Secrets can be consumed using the Kubernetes REST API by applications that know
how to call that API directly. However, our goal is to keep applications portable. Not
only should they run well in Kubernetes, but they should run, unmodified, on other
platforms.

Instead of accessing secrets through the API server, we can use a secrets volume.

Secrets volumes

Secret data can be exposed to pods using the secrets volume type. Secrets volumes



are managed by the kubelet and are created at pod creation time. Secrets are stored
on tmpfs volumes (aka RAM disks) and, as such, are not written to disk on nodes.

Each data element of a secret is stored in a separate file under the target mount point
specified in the volume mount. The kuard- tls secret contains two data elements:

kuard.crt and kuard.key. Mounting the kuard- tls secrets volume to /tls results in
the following files:

[/tls/cert.pem
[/tls/key.pem

The following pod manifest (Example 11-3) demonstrates how to declare a secrets
volume, which exposes the kuard- tls secret to the kuard container under /tls.

Example 11-3. kuard-secret.yaml

apiVersion: vi
kind: Pod
metadata:
name: kuard-tls
spec:
contailners:
- name: kuard-tls

image: gcr.io/kuar-demo/kuard-amdé64:1

imagePullPolicy: Always

volumeMounts:

- name: tls-certs
mountPath: "/tls"
readOnly: true

volumes:
- name: tls-certs

secret:
secretName: kuard-tls

Create the kuard-tls pod using kubectl and observe the log output from the
running pod:

$ kubectl apply -f kuard-secret.yaml
Connect to the pod by running:

$ kubectl port-forward kuard-tls 8443:8443



Now navigate your browser to https://localhost:8443. Y ou should see some invalid
certificate warnings as this is a self-signed certificate for kuard.example.com. If you
navigate past this warning, you should see the kuard server hosted via HTTPS. Use
the “File system browser” tab to find the certificates on disk.

Private Docker Registries

A special use case for secrets is to store access credentials for private Docker
registries. Kubernetes supports using images stored on private registries, but access
to those images requires credentials. Private images can be stored across one or more
private registries. This presents a challenge for managing credentials for each private
registry on every possible node in the cluster.

Image pull secrets leverage the secrets API to automate the distribution of private
registry credentials. Image pull secrets are stored just like normal secrets but are

consumed through the spec.imagePullSecrets Pod specification field.

Use the create secret docker-registry to create this special kind of secret:

$ kubectl create secret docker-registry my-image-pull-secret \
--docker-username=<username> \
--docker-password=<password> \
--docker-email=<email-address>

Enable access to the private repository by referencing the image pull secret in the
pod manifest file, as shown in Example 11-4.

Example 11-4. kuard-secret-ips.yaml

apiVersion: vi1
kind: Pod
metadata:
name: kuard-tls
spec:
contailners:
- name: kuard-tls

image: gcr.io/kuar-demo/kuard-amdé64:1

imagePullPolicy: Always

volumeMounts:

- name: tls-certs
mountPath: "/tls"
readOnly: true

imagePullSecrets:


https://localhost:8443

- name: my-image-pull-secret
volumes:
- name: tls-certs
secret:
secretName: kuard-tls

Naming Constraints

The key names for data items inside of a secret or ConfigMap are defined to map to
valid environment variable names. They may begin with a dot followed by a letter or
number. Following characters include dots, dashes, and underscores. Dots cannot be
repeated and dots and underscores or dashes cannot be adjacent to each other. More
formally, this means that they must conform to the regular expression [.]?[a-zA-
Z0-9]([.]?[-_a-zA-Z20-9]*[a-zA-Z0-9])*. Some examples of valid and invalid
names for ConfigMaps or secrets are given in Table 11-1.

Table 11-1. ConfigMap and secret key examples

Valid key name Invalid key name
.auth_token Token. .properties
Key.pem auth file.json
config_file _password. txt
NOTE

When selecting a key name consider that these keys can be exposed to pods via a
volume mount. Pick a name that is going to make sense when specified on a command

line or in a config file. Storing a TLS key as key. pem is more clear than tls-key when
configuring applications to access secrets.

ConfigMap data values are simple UTF-8 text specified directly in the manifest. As
of Kubernetes 1.6, ConfigMaps are unable to store binary data.

Secret data values hold arbitrary data encoded using base64. The use of base64
encoding makes it possible to store binary data. This does, however, make it more
difficult to manage secrets that are stored in YAML files as the base64-encoded



value must be put in the YAML.

Managing ConfigMaps and Secrets

Secrets and ConfigMaps are managed through the Kubernetes API. The usual
create, delete, get, and describe commands work for manipulating these
objects.

Listing
You can use the kubectl get secrets command to list all secrets in the current
namespace:

$ kubectl get secrets

NAME TYPE DATA AGE
default-token-f5jq2  kubernetes.io/service-account-token 3 1h
kuard-tls Opaque 2 20m

Similarly, you can list all of the ConfigMaps in a namespace:

$ kubectl get configmaps

NAME DATA AGE
my-config 3 im

kubectl describe can be used to get more details on a single object:

$ kubectl describe configmap my-config

Name: my-config
Namespace: default
Labels: <none>
Annotations: <none>
Data

another-param: 13 bytes
extra-param: 11 bytes
my-config.txt: 116 bytes



Finally, you can see the raw data (including values in secrets!) with something like
kubectl get configmap my-config -o yaml or kubectl get secret kuard-
tls -o yaml.

Creating

The easiest way to create a secret or a ConfigMap is via kubectl create secret

generic or kubectl create configmap. There are a variety of ways to specify the
data items that go into the secret or ConfigMap. These can be combined in a single
command:

--from-file=<filename>

Load from the file with the secret data key the same as the filename.

--from-file=<key>=<filename>

Load from the file with the secret data key explicitly specified.

--from-file=<directory>
Load all the files in the specified directory where the filename is an acceptable
key name.

--from-literal=<key>=<value>

Use the specified key/value pair directly.

Updating

You can update a ConfigMap or secret and have it reflected in running programs.
There is no need to restart if the application is configured to reread configuration
values. This is a rare feature but might be something you put in your own
applications.

The following are three ways to update ConfigMaps or secrets.

Update from file

If you have a manifest for your ConfigMap or secret, you can just edit it directly and
push a new version with kubectl replace -f <filename>. You can also use
kubectl apply -f <filename> if you previously created the resource with



kubectl apply.

Due to the way that datafiles are encoded into these objects, updating a configuration

can be a bit cumbersome as there is no provision in kubectl to load data from an
external file. The data must be stored directly in the YAML manifest.

The most common use case is when the ConfigMap is defined as part of a directory
or list of resources and everything is created and updated together. Oftentimes these
manifests will be checked into source control.

It is generally a bad idea to check secret YAML files into source control. It is too easy to
push these files someplace public and leak your secrets.

Recreate and update

If you store the inputs into your ConfigMaps or secrets as separate files on disk (as

opposed to embedded into YAML directly), you can use kubectl to recreate the
manifest and then use it to update the object.

This will look something like this:

$ kubectl create secret generic kuard-tls \
--from-file=kuard.crt --from-file=kuard.key \
--dry-run -o yaml | kubectl replace -f -

This command line first creates a new secret with the same name as our existing
secret. If we just stopped there, the Kubernetes API server would return an error
complaining that we are trying to create a secret that already exists. Instead, we tell

kubectl not to actually send the data to the server but instead to dump the YAML
that it would have sent to the API server to stdout. We then pipe that to kubectl
replace and use -f - to tell it to read from stdin. In this way we can update a

secret from files on disk without having to manually base64-encode data.
Edit current version

The final way to update a ConfigMap is to use kubectl edit to bring up a version
of the ConfigMap in your editor so you can tweak it (you could also do this with a



secret, but you’d be stuck managing the base64 encoding of values on your own):
$ kubectl edit configmap my-config

You should see the ConfigMap definition in your editor. Make your desired changes
and then save and close your editor. The new version of the object will be pushed to
the Kubernetes API server.

Live updates

Once a ConfigMap or secret is updated using the API, it’ll be automatically pushed
to all volumes that use that ConfigMap or secret. It may take a few seconds, but the
file listing and contents of the files, as seen by kuard, will be updated with these new
values. Using this live update feature you can update the configuration of
applications without restarting them.

Currently there is no built-in way to signal an application when a new version of a
ConfigMap is deployed. It is up to the application (or some helper script) to look for
the config files to change and reload them.

Using the file browser in kuard (accessed through kubectl port-forward)isa
great way to interactively play with dynamically updating secrets and ConfigMaps.

Summary

ConfigMaps and secrets are a great way to provide dynamic configuration in your
application. They allow you to create a container image (and pod definition) once
and reuse it in different contexts. This can include using the exact same image as you
move from dev to staging to production. It can also include using a single image
across multiple teams and services. Separating configuration from application code
will make your applications more reliable and reusable.



Chapter 12. Deployments

So far, you have seen how to package your application as a container, create a
replicated set of these containers, and use services to load-balance traffic to your
service. All of these objects are used to build a single instance of your application.
They do little to help you manage the daily or weekly cadence of releasing new
versions of your application. Indeed, both Pods and ReplicaSets are expected to be
tied to specific container images that don’t change.

The Deployment object exists to manage the release of new versions. Deployments
represent deployed applications in a way that transcends any particular software
version of the application. Additionally, Deployments enable you to easily move
from one version of your code to the next version of your code. This “rollout”
process 1s configurable and careful. It waits for a user-configurable amount of time
between upgrading individual Pods. It also uses health checks to ensure that the new
version of the application is operating correctly, and stops the deployment if too
many failures occur.

Using Deployments you can simply and reliably roll out new software versions
without downtime or errors. The actual mechanics of the software rollout performed
by a Deployment is controlled by a Deployment controller that runs in the
Kubernetes cluster itself. This means you can let a Deployment proceed unattended
and it will still operate correctly and safely. This makes it easy to integrate
Deployments with numerous continuous delivery tools and services. Further, running
server-side makes it safe to perform a rollout from places with poor or intermittent
internet connectivity. Imagine rolling out a new version of your software from your
phone while riding on the subway. Deployments make this possible and safe!

NOTE

When Kubernetes was first released, one of the most popular demonstrations of its
power was the “rolling update,” which showed how you could use a single command to
seamlessly update a running application without taking any downtime or losing requests.
This original demo was based on the kubectl rolling-update command, which is
still available in the command-line tool, but its functionality has largely been subsumed
by the Deployment object.



Your First Deployment
At the beginning of this book, you created a Pod by running kubectl run. It was
something similar to:

$ kubectl run nginx --image=nginx:1.7.12

Under the hood, this was actually creating a Deployment object.

You can view this Deployment object by running:

$ kubectl get deployments nginx
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 1 1 1 1 13s

Deployment Internals

Let’s explore how Deployments actually work. Just as we learned that ReplicaSets
manage Pods, Deployments manage ReplicaSets. As with all relationships in
Kubernetes, this relationship is defined by labels and a label selector. You can see

the label selector by looking at the Deployment object:

$ kubectl get deployments nginx \
-0 jsonpath --template {.spec.selector.matchLabels}

map[run:nginx]

From this you can see that the Deployment is managing a ReplicaSet with the labels
run=nginx. We can use this in a label selector query across ReplicaSets to find that
specific ReplicaSet:

$ kubectl get replicasets --selector=run=nginx

NAME DESIRED  CURRENT  READY AGE
nginx-1128242161 1 1 1 13m

Now let’s see the relationship between a Deployment and a ReplicaSet in action. We



can resize the Deployment using the imperative scale command:

$ kubectl scale deployments nginx --replicas=2

deployment "nginx" scaled
Now if we list that ReplicaSet again, we should see:

$ kubectl get replicasets --selector=run=nginx

NAME DESIRED  CURRENT  READY AGE
nginx-1128242161 2 2 2 13m

Scaling the Deployment has also scaled the ReplicaSet it controls.
Now let’s try the opposite, scaling the ReplicaSet:

$ kubectl scale replicasets nginx-1128242161 --replicas=1

replicaset "nginx-1128242161" scaled
Now get that ReplicaSet again:

$ kubectl get replicasets --selector=run=nginx

NAME DESIRED  CURRENT  READY AGE
nginx-1128242161 2 2 2 13m

That’s odd. Despite our scaling the ReplicaSet to one replica, it still has two replicas
as its desired state. What’s going on? Remember, Kubernetes is an online, self-
healing system. The top-level Deployment object is managing this ReplicaSet. When
you adjust the number of replicas to one, it no longer matches the desired state of the
Deployment, which has replicas set to 2. The Deployment controller notices this
and takes action to ensure the observed state matches the desired state, in this case
readjusting the number of replicas back to two.

If you ever want to manage that ReplicaSet directly, you need to delete the

Deployment (remember to set - -cascade to false, or else it will delete the
ReplicaSet and Pods as well!).



Creating Deployments

Of course, as has been stated elsewhere, you should have a preference for declarative
management of your Kubernetes configurations. This means maintaining the state of
your deployments in YAML or JSON files on disk.

As a starting point, download this Deployment into a YAML file:

$ kubectl get deployments nginx --export -o yaml > nginx-deployment.yaml
$ kubectl replace -f nginx-deployment.yaml --save-config

If you look in the file, you will see something like this:

apiVersion: extensions/vibetal
kind: Deployment
metadata:
annotations:
deployment.kubernetes.io/revision: "1"
labels:
run: nginx
name: nginx
namespace: default
spec:
replicas: 2
selector:
matchLabels:
run: nginx
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
type: RollingUpdate
template:
metadata:
labels:
run: nginx
spec:
containers:
- image: nginx:1.7.12
imagePullPolicy: Always
dnsPolicy: ClusterFirst
restartPolicy: Always



NOTE

A lot of read-only and default fields were removed in the preceding listing for brevity.
We also need to run kubectl replace --save-config. This adds an annotation so
that, when applying changes in the future, kubectl will know what the last applied
configuration was for smarter merging of configs. If you always use kubectl apply,
this step is only required after the first time you create a Deployment using kubectl
create -f.

The Deployment spec has a very similar structure to the ReplicaSet spec. There is a
Pod template, which contains a number of containers that are created for each replica
managed by the Deployment. In addition to the Pod specification, there is also a

strategy object:

strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
type: RollingUpdate

The strategy object dictates the different ways in which a rollout of new software
can proceed. There are two different strategies supported by Deployments: Recreate
and RollingUpdate.

These are discussed in detail later in this chapter.

Managing Deployments

As with all Kubernetes objects, you can get detailed information about your
Deployment via the kubectl describe command:

$ kubectl describe deployments nginx

Name: nginx
Namespace: default
CreationTimestamp: Sat, 31 Dec 2016 09:53:32 -0800

Labels: run=nginx



Selector: run=nginx

Replicas: 2 updated | 2 total | 2 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 1 max unavailable, 1 max surge
OldReplicaSets: <none>
NewReplicaSet: nginx-1128242161 (2/2 replicas created)
Events:
FirstSeen cen Message
5m e Scaled up replica set nginx-1128242161 to 1
4m ... Scaled up replica set nginx-1128242161 to 2

In the output of describe there is a great deal of important information.

Two of the most important pieces of information in the output are 0ldReplicaSets
and NewReplicaSet. These fields point to the ReplicaSet objects this Deployment is
currently managing. If a Deployment is in the middle of a rollout, both fields will be
set to a value. If a rollout is complete, 0LldReplicaSets will be set to <none>.

In addition to the describe command, there is also the kubectl rollout command
for deployments. We will go into this command in more detail later on, but for now,

you can use kubectl rollout history to obtain the history of rollouts associated
with a particular Deployment. If you have a current Deployment in progress, then
you can use kubectl rollout status to obtain the current status of a rollout.

Updating Deployments

Deployments are declarative objects that describe a deployed application. The two
most common operations on a Deployment are scaling and application updates.

Scaling a Deployment

Although we previously showed how you could imperatively scale a Deployment
using the kubectl scale command, the best practice is to manage your
Deployments declaratively via the YAML files, and then use those files to update
your Deployment. To scale up a Deployment, you would edit your YAML file to
increase the number of replicas:



spec:
replicas: 3

Once you have saved and committed this change, you can update the Deployment
using the kubectl apply command:

$ kubectl apply -f nginx-deployment.yaml

This will update the desired state of the Deployment, causing it to increase the size
of the ReplicaSet it manages, and eventually create a new Pod managed by the
Deployment:

$ kubectl get deployments nginx

NAME DESIRED  CURRENT  UP-TO-DATE  AVAILABLE AGE
nginx 3 3 3 3 4m

Updating a Container Image

The other common use case for updating a Deployment is to roll out a new version
of the software running in one or more containers. To do this, you should likewise
edit the deployment YAML file, though in this case you are updating the container
image, rather than the number of replicas:

containers:
- image: nginx:1.9.10
imagePullPolicy: Always

We are also going to put an annotation in the template for the Deployment to record
some information about the update:

spec:
template:
annotations:
kubernetes.io/change-cause: "Update nginx to 1.9.10"



Make sure you add this annotation to the template and not the Deployment itself. Also,
do not update the change-cause annotation when doing simple scaling operations. A

modification of change-cause is a significant change to the template and will trigger a
new rollout.

Again, you can use kubectl apply to update the Deployment:
$ kubectl apply -f nginx-deployment.yaml

After you update the Deployment it will trigger a rollout, which you can then
monitor via the kubectl rollout command:

$ kubectl rollout status deployments nginx
deployment nginx successfully rolled out

You can see the old and new ReplicaSets managed by the deployment along with the
images being used. Both the old and new ReplicaSets are kept around in case you
want to roll back:

$ kubectl get replicasets -o wide

NAME DESIRED CURRENT READY cee IMAGE(S)
nginx-1128242161 0 0 0 ces nginx:1.7.12
nginx-1128635377 3 3 3 e nginx:1.9.10

If you are in the middle of a rollout and you want to temporarily pause it for some
reason (e.g., if you start seeing weird behavior in your system and you want to
investigate), you can use the pause command:

$ kubectl rollout pause deployments nginx
deployment "nginx" paused

If, after investigation, you believe the rollout can safely proceed, you can use the
resume command to start up where you left off:



$ kubectl rollout resume deployments nginx
deployment "nginx" resumed

Rollout History

Kubernetes Deployments maintain a history of rollouts, which can be useful both for
understanding the previous state of the Deployment and to roll back to a specific
version.

You can see the deployment history by running;:

$ kubectl rollout history deployment nginx

deployments "nginx"

REVISION CHANGE - CAUSE
1 <none>
2 Update nginx to 1.9.10

The revision history is given in oldest to newest order. A unique revision number is
incremented for each new rollout. So far we have two: the initial deployment, the

update of the image to nginx:1.9.10.

If you are interested in more details about a particular revision, you can add the - -
revision flag to view details about that specific revision:

$ kubectl rollout history deployment nginx --revision=2

deployments "nginx" with revision #2

Labels: pod-template-hash=2738859366
run=nginx
Annotations: kubernetes.io/change-cause=Update nginx to 1.9.10
Containers:
nginx:
Image: nginx:1.9.10
Port:
Volume Mounts: <none>
Environment Variables: <none>
No volumes.

Let’s do one more update for this example. Update the nginx version to 1.10.2 by
modifying the container version number and updating the change - cause annotation.
Apply it with kubectl apply. Our history should now have three entries:



$ kubectl rollout history deployment nginx

deployments "nginx"

REVISION CHANGE - CAUSE

1 <none>

2 Update nginx to 1.9.10
3 Update nginx to 1.10.2

Let’s say there is an issue with the latest release and you want to roll back while you
investigate. You can simply undo the last rollout:

$ kubectl rollout undo deployments nginx
deployment "nginx" rolled back

The undo command works regardless of the stage of the rollout. You can undo both
partially completed and fully completed rollouts. An undo of a rollout is actually
simply a rollout in reverse (e.g., from v2 to v/, instead of from v/ to v2), and all of
the same policies that control the rollout strategy apply to the undo strategy as well.
You can see the Deployment object simply adjusts the desired replica counts in the
managed ReplicaSets:

$ kubectl get replicasets -o wide

NAME DESIRED CURRENT READY e IMAGE(S)

nginx-1128242161 0 0 0 ce nginx:1.7.12
nginx-1570155864 0 0 0 ce nginx:1.10.2
nginx-2738859366 3 3 3 ce nginx:1.9.10

When using declarative files to control your production systems, you want to, as much
as possible, ensure that the checked-in manifests match what is actually running in your

cluster. When you do a kubectl rollout undo you are updating the production state
in a way that isn’t reflected in your source control.

An alternate (and perhaps preferred) way to undo a rollout is to revert your YAML file

and kubectl apply the previous version. In this way your “change tracked
configuration” more closely tracks what is really running in your cluster.

Let’s look at our deployment history again:



$ kubectl rollout history deployment nginx

REVISION CHANGE - CAUSE

1 <none>

3 Update nginx to 1.10.2
4 Update nginx to 1.9.10

Revision 2 is missing! It turns out that when you roll back to a previous revision, the
Deployment simply reuses the template and renumbers it so that it is the latest
revision. What was revision 2 before is now reordered into revision 4.

We previously saw that you can use the kubectl rollout undo command to roll
back to a previous version of a deployment. Additionally, you can roll back to a
specific revision in the history using the - -to-revision flag:

$ kubectl rollout undo deployments nginx --to-revision=3
deployment "nginx" rolled back

$ kubectl rollout history deployment nginx

deployments "nginx"

REVISION CHANGE - CAUSE

1 <none>

4 Update nginx to 1.9.10
5 Update nginx to 1.10.2

Again, the undo took revision 3, applied it, and renumbered it as revision 5.

Specifying a revision of 0 is a shorthand way of specifying the previous revision. In
this way, kubectl rollout undo is equivalent to kubectl rollout undo --to-
revision=0.

By default, the complete revision history of a Deployment is kept attached to the
Deployment object itself. Over time (e.g., years) this history can grow fairly large, so
it is recommended that if you have Deployments that you expect to keep around for a
long time you set a maximum history size for the Deployment revision history, to
limit the total size of the Deployment object. For example, if you do a daily update
you may limit your revision history to 14, to keep a maximum of 2 weeks’ worth of
revisions (if you don’t expect to need to roll back beyond 2 weeks).

To accomplish this, use the revisionHistoryLimit property in the Deployment
specification:



spec:
# We do daily rollouts, limit the revision history to two weeks of
# releases as we don't expect to roll back beyond that.
revisionHistoryLimit: 14

Deployment Strategies

When it comes time to change the version of software implementing your service, a
Kubernetes Deployment supports two different rollout strategies:

e Recreate

e RollingUpdate

Recreate Strategy

The recreate strategy is the simpler of the two rollout strategies. It simply updates the
ReplicaSet it manages to use the new image and terminates all of the Pods associated
with the Deployment. The ReplicaSet notices that it no longer has any replicas, and
re-creates all Pods using the new image. Once the Pods are re-created, they are
running the new version.

While this strategy is fast and simple, it has one major drawback—it is potentially
catastrophic, and will almost certainly result in some site downtime. Because of this,
the recreate strategy should only be used for test deployments where a service is not
user-facing and a small amount of downtime 1s acceptable.

RollingUpdate Strategy

The RollingUpdate strategy is the generally preferable strategy for any user-facing
service. While it is slower than Recreate, it is also significantly more sophisticated

and robust. Using RollingUpdate, you can roll out a new version of your service
while it is still receiving user traffic, without any downtime.

As you might infer from the name, the rolling update strategy works by updating a
few Pods at a time, moving incrementally until all of the Pods are running the new
version of your software.



Managing multiple versions of your service

Importantly, this means that for a period of time, both the new and the old version of
your service will be receiving requests and serving traffic. This has important
implications for how you build your software. Namely, it is critically important that
each version of your software, and all of its clients, is capable of talking
interchangeably with both a slightly older and a slightly newer version of your
software.

As an example of why this is important, consider the following scenario:

You are in the middle of rolling out your frontend software, half of your servers
are running version 1 and half are running version 2. A user makes an initial
request to your service and downloads a client-side JavaScript library that
implements your Ul. This request is serviced by a version 1 server and thus the
user receives the version 1 client library. This client library runs in the user’s
browser and makes subsequent API requests to your service. These API requests
happen to be routed to a version 2 server; thus, version 1 of your JavaScript client
library is talking to version 2 of your API server. If you haven’t ensured
compatibility between these versions, your application won't function correctly.

At first, this might seem like an extra burden. But in truth, you always had this
problem; you may just not have noticed. Concretely, a user can make a request at
time t just before you initiate an update. This request is serviced by a version 1
server. At t_1 you update your service to version 2. At t_2 the version 1 client code
running on the user’s browser runs and hits an API endpoint being operated by a
version 2 server. No matter how you update your software, you have to maintain
backward and forward compatibility for reliable updates. The nature of the rolling
update strategy simply makes it more clear and explicit that this is something to
think about.

Note that this doesn’t just apply to JavaScript clients—the same thing is true of client
libraries that are compiled into other services that make calls to your service. Just
because you updated doesn’t mean they have updated their client libraries. This sort
of backward compatibility is critical to decoupling your service from systems that
depend on your service. If you don’t formalize your APIs and decouple yourself, you
are forced to carefully manage your rollouts with all of the other systems that call
into your service. This kind of tight coupling makes it extremely hard to produce the
necessary agility to be able to push out new software every week, let alone every
hour or every day. In the de-coupled architecture shown in Figure 12-1, the frontend



1s 1solated from the backend via an API contract and a load balancer, whereas in the
coupled architecture, a thick client compiled into the frontend is used to connect
directly to the backends.

I R Frontend #1 Frontend #N
ronten -+ | FTONtEN Thick Backend| "~ | |Thick Backend
(lient Client

\ 4 \ 4
Backend Load Balancer

\ 4 v

APl Contract API Contract
Frontend #1 Frontend #N

Backend#1 | ... | Backend #N

Figure 12-1. Diagrams of both de-coupled (left) and couple (right) application architectures

Configuring a rolling update

RollingUpdate is a fairly generic strategy; it can be used to update a variety of
applications in a variety of settings. Consequently, the rolling update itself is quite
configurable; you can tune its behavior to suit your particular needs. There are two
parameters you can use to tune the rolling update behavior: maxUnavailable and

maxSurge.

The maxUnavailable parameter sets the maximum number of Pods that can be
unavailable during a rolling update. It can either be set to an absolute number (e.g., 3
meaning a maximum of three Pods can be unavailable) or to a percentage (e.g., 20%
meaning a maximum of 20% of the desired number of replicas can be unavailable).

Generally speaking, using a percentage is a good approach for most services, since
the value is correctly applicable regardless of the desired number of replicas in the
Deployment. However, there are times when you may want to use an absolute
number (e.g., limiting the maximum unavailable pods to one).

At its core, the maxUnavailable parameter helps tune how quickly a rolling update



proceeds. For example, if you set maxUnavailable to 50%, then the rolling update
will immediately scale the old ReplicaSet down to 50% of its original size. If you
have four replicas, it will scale it down to two replicas. The rolling update will then
replace the removed pods by scaling the new ReplicaSet up to two replicas, for a
total of four replicas (two old, two new). It will then scale the old ReplicaSet down
to zero replicas, for a total size of two new replicas. Finally, it will scale the new
ReplicaSet up to four replicas, completing the rollout. Thus, with maxUnavailable

set to 50%, our rollout completes in four steps, but with only 50% of our service
capacity at times.

Consider instead what happens if we set maxUnavailable to 25%. In this situation,
each step is only performed with a single replica at a time and thus it takes twice as
many steps for the rollout to complete, but availability only drops to a minimum of
75% during the rollout. This illustrates how maxUnavailable allows us to trade
rollout speed for availability.

NOTE

The observant among you will note that the recreate strategy is actually identical to the
rolling update strategy with maxUnavailable set to 100%.

Using reduced capacity to achieve a successful rollout is useful either when your
service has cyclical traffic patterns (e.g., much less traffic at night) or when you have
limited resources, so scaling to larger than the current maximum number of replicas
isn’t possible.

However, there are situations where you don’t want to fall below 100% capacity, but
you are willing to temporarily use additional resources in order to perform a rollout.
In these situations, you can set the maxUnavailable parameter to 0%, and instead
control the rollout using the maxSurge parameter. Like maxUnavailable, maxSurge
can be specified either as a specific number or a percentage.

The maxSurge parameter controls how many extra resources can be created to
achieve a rollout. To illustrate how this works, imagine we have a service with 10
replicas. We set maxUnavailable to 0 and maxSurge to 20%. The first thing the
rollout will do is scale the new ReplicaSet up to 2 replicas, for a total of 12 (120%)
in the service. It will then scale the old ReplicaSet down to 8 replicas, for a total of



10 (8 old, 2 new) in the service. This process proceeds until the rollout is complete.
At any time, the capacity of the service is guaranteed to be at least 100% and the
maximum extra resources used for the rollout are limited to an additional 20% of all
resources.

NOTE

Setting maxSurge to 100% is equivalent to a blue/green deployment. The Deployment
controller first scales the new version up to 100% of the old version. Once the new
version is healthy, it immediately scales the old version down to 0%.

Slowing Rollouts to Ensure Service Health

The purpose of a staged rollout is to ensure that the rollout results in a healthy, stable
service running the new software version. To do this, the Deployment controller
always waits until a Pod reports that it is ready before moving on to updating the
next Pod.

The Deployment controller examines the Pod’s status as determined by its readiness
checks. Readiness checks are part of the Pod’s health probes, and they are described in
detail in Chapter 5. If you want to use Deployments to reliably roll out your software,
you have to specify readiness health checks for the containers in your Pod. Without
these checks the Deployment controller is running blind.

Sometimes, however, simply noticing that a Pod has become ready doesn’t give you
sufficient confidence that the Pod actually is behaving correctly. Some error
conditions only occur after a period of time. For example, you could have a serious
memory leak that still takes a few minutes to show up, or you could have a bug that
1s only triggered by 1% of all requests. In most real-world scenarios, you want to
wait a period of time to have high confidence that the new version is operating
correctly before you move on to updating the next Pod.

For deployments, this time to wait is defined by the minReadySeconds parameter:



spec:
minReadySeconds: 60

Setting minReadySeconds to 60 indicates that the Deployment must wait for 60
seconds after seeing a Pod become healthy before moving on to updating the next
Pod.

In addition to waiting a period of time for a Pod to become healthy, you also want to
set a timeout that limits how long the system will wait. Suppose, for example, the
new version of your service has a bug and immediately deadlocks. It will never
become ready, and in the absence of a timeout, the Deployment controller will stall
your roll-out forever.

The correct behavior in such a situation is to time out the rollout. This in turn marks
the rollout as failed. This failure status can be used to trigger alerting that can
indicate to an operator that there is a problem with the rollout.

NOTE

At first blush, timing out a rollout might seem like a unnecessary complication.
However, increasingly, things like rollouts are being triggered by fully automated
systems with little to no human involvement. In such a situation, timing out becomes a
critical exception, which can either trigger an automated rollback of the release or create
a ticket/event that triggers human intervention.

To set the timeout period, the Deployment parameter progressDeadlineSeconds is
used:

spec:
progressDeadlineSeconds: 600

This example sets the progress deadline to 10 minutes. If any particular stage in the
rollout fails to progress in 10 minutes, then the Deployment is marked as failed, and
all attempts to move the Deployment forward are halted.



It is important to note that this timeout is given in terms of Deployment progress, not
the overall length of a Deployment. In this context progress is defined as any time
the deployment creates or deletes a Pod. When that happens, the timeout clock is
reset to zero. Figure 12-2 is an illustration of the deployment lifecycle.
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Figure 12-2. The Kubernetes Deployment lifecycle

Deleting a Deployment

If you ever want to delete a deployment, you can do it either with the imperative
command:

$ kubectl delete deployments nginx
or using the declarative YAML file we created earlier:
$ kubectl delete -f nginx-deployment.yaml

In either case, by default, deleting a Deployment deletes the entire service. It will
delete not just the Deployment, but also any ReplicaSets being managed by the
Deployment, as well as any Pods being managed by the ReplicaSets. As with
ReplicaSets, if this is not the desired behavior, you can use the - -cascade=false
flag to exclusively delete the Deployment object.



Summary

At the end of the day, the primary goal of Kubernetes is to make it easy for you to
build and deploy reliable distributed systems. This means not just instantiating the
application once, but managing the regularly scheduled rollout of new versions of
that software service. Deployments are a critical piece of reliable rollouts and rollout
management for your services.



Chapter 13. Integrating Storage
Solutions and Kubernetes

In many cases decoupling state from applications and building your microservices to
be as stateless as possible results in maximally reliable, manageable systems.

However, nearly every system that has any complexity has state in the system
somewhere, from the records in a database to the index shards that serve results for a
web search engine. At some point you have to have data stored somewhere.

Integrating this data with containers and container orchestration solutions is often the
most complicated aspect of building a distributed system. This complexity largely
stems from the fact that the move to containerized architectures is also a move
toward decoupled, immutable, and declarative application development. These
patterns are relatively easy to apply to stateless web applications, but even “cloud-
native” storage solutions like Cassandra or MongoDB involve some sort of manual
or imperative steps to set up a reliable, replicated solution.

As an example of this, consider setting up a ReplicaSet in MongoDB, which
involves deploying the Mongo daemon and then running an imperative command to
identify the leader, as well as the participants in the Mongo cluster. Of course, these
steps can be scripted, but in a containerized world it is difficult to see how to
integrate such commands into a deployment. Likewise, even getting DNS-resolvable
names for individual containers in a replicated set of containers is challenging.

Additional complexity comes from the fact that there is data gravity. Most
containerized systems aren’t built in a vacuum; they are usually adapted from
existing systems deployed onto VMs, and these systems likely include data that has
to be imported or migrated.

Finally, evolution to the cloud means that many times storage is actually an
externalized cloud service, and in that context it can never really exist inside of the
Kubernetes cluster.

This chapter covers a variety of approaches for integrating storage into containerized
microservices in Kubernetes. First, we cover how to import existing external storage
solutions (either cloud services or running on VMs) into Kubernetes. Next, we



explore how to run reliable singletons inside of Kubernetes that enable you to have
an environment that largely matches the VMs where you previously deployed
storage solutions. Finally we cover StatefulSets, which are still under development
but represent the future of stateful workloads in Kubernetes.

Importing External Services

In many cases, you have an existing machine running in your network that has some
sort of database running on it. In this situation you may not want to immediately
move that database into containers and Kubernetes. Perhaps it is run by a different
team, or you are doing a gradual move, or the task of migrating the data is simply
more trouble than it’s worth.

Regardless of the reasons for staying put, this legacy server and service are not going
to move into Kubernetes, but nonetheless it is still worthwhile to represent this server
in Kubernetes. When you do this, you get to take advantage of all of the built-in
naming and service discovery primitives provided by Kubernetes. Additionally, this
enables you to configure all your applications so that it looks like the database that is
running on a machine somewhere is actually a Kubernetes service. This means that it
is trivial to replace it with a database that is a Kubernetes service. For example, in
production, you may rely on your legacy database that is running on a machine, but
for continuous testing you may deploy a test database as a transient container. Since
it is created and destroyed for each test run, data persistence isn’t important in the
continuous testing case. Representing both databases as Kubernetes services enables
you to maintain identical configurations in both testing and production. High fidelity
between test and production ensures that passing tests will lead to successful
deployment in production.

To see concretely how you maintain high fidelity between development and
production, remember that all Kubernetes objects are deployed into namespaces.

Imagine that we have test and product namespaces defined. The test service is
imported using an object like:

kind: Service

metadata:
name: my-database
# note 'test' namespace here
namespace: test



The production service looks the same, except it uses a different namespace:

kind: Service

metadata:
name: my-database
# note 'prod' namespace here
namespace: prod

When you deploy a Pod into the test namespace and it looks up the service named
my-database, it will receive a pointer to my -
database.test.svc.cluster.internal, which in turn points to the test database.
In contrast, when a Pod deployed in the prod namespace looks up the same name
(my-database) it will receive a pointer to my -
database.prod.svc.cluster.internal, which is the production database. Thus,
the same service name, in two different namespaces, resolves to two different
services. For more details on how this works, see Chapter 7.

NOTE

The following techniques all use database or other storage services, but these approaches
can be used equally well with other services that aren’t running inside your Kubernetes
cluster.

Services Without Selectors

When we first introduced services, we talked at length about label queries and how
they were used to identify the dynamic set of Pods that were the backends for a
particular service. With external services, however, there is no such label query.
Instead, you generally have a DNS name that points to the specific server running
the database. For our example, let’s assume that this server is named
database.company.com. To import this external database service into Kubernetes,
we start by creating a service without a Pod selector that references the DNS name of
the database server (Example 13-1).

Example 13-1. dns-service.yaml

kind: Service
apiVersion: vi1



metadata:
name: external-database
spec:
type: ExternalName
externalName: "database.company.com

When a typical Kubernetes service is created, an IP address is also created and the
Kubernetes DNS service is populated with an A record that points to that IP address.
When you create a service of type ExternalName, the Kubernetes DNS service is
instead populated with a CNAME record that points to the external name you
specified (database.company.com in this case). When an application in the cluster
does a DNS lookup for the hostname external-database.svc.default.cluster,
the DNS protocol aliases that name to “database.company.com.” This then resolves
to the IP address of your external database server. In this way, all containers in
Kubernetes believe that they are talking to a service that is backed with other
containers, when in fact they are being redirected to the external database.

Note that this is not restricted to databases you are running on your own
infrastructure. Many cloud databases and other services provide you with a DNS
name to use when accessing the database (e.g., my-
database.databases.cloudprovider.com). You can use this DNS name as the

externalName. This imports the cloud-provided database into the namespace of
your Kubernetes cluster.

Sometimes, however, you don’t have a DNS address for an external database
service, just an IP address. In such cases, it is still possible to import this server as a
Kubernetes service, but the operation is a little different. First, you create a Service
without a label selector, but also without the ExternalName type we used before
(Example 13-2).

Example 13-2. external-ip-service.yaml

kind: Service
apiVersion: vi1
metadata:
name: external-ip-database

At this point, Kubernetes will allocate a virtual IP address for this service and
populate an A record for it. However, because there is no selector for the service,
there will be no endpoints populated for the load balancer to redirect traffic to.

Given that this is an external service, the user is responsible for populating the



endpoints manually with an Endpoints resource (Example 13-3).

Example 13-3. external-ip-endpoints.yaml

kind: Endpoints
apiVersion: vi1
metadata:
name: external-ip-database
subsets:
- addresses:
- ip: 192.168.0.1
ports:
- port: 3306

If you have more than one IP address for redundancy, you can repeat them in the

addresses array. Once the endpoints are populated, the load balancer will start
redirecting traffic from your Kubernetes service to the IP address endpoint(s).

NOTE

Because the user has assumed responsibility for keeping the IP address of the server up
to date, you need to either ensure that it never changes or make sure that some

automated process updates the Endpoints record.

Limitations of External Services: Health Checking

External services in Kubernetes have one significant restriction: they do not perform
any health checking. The user is responsible for ensuring that the endpoint or DNS
name supplied to Kubernetes is as reliable as necessary for the application.

Running Reliable Singletons

The challenge of running storage solutions in Kubernetes is often that primitives like
ReplicaSet expect that every container is identical and replaceable, but for most
storage solutions this isn’t the case. One option to address this is to use Kubernetes
primitives, but not attempt to replicate the storage. Instead, simply run a single Pod
that runs the database or other storage solution. In this way the challenges of running
replicated storage in Kubernetes don’t occur, since there is no replication.

At first blush, this might seem to run counter to the principles of building reliable



distributed systems, but in general, it is no less reliable than running your database or
storage infrastructure on a single virtual or physical machine, which is how many
people currently have built their systems. Indeed, in reality, if you structure the
system properly the only thing you are sacrificing 1s potential downtime for upgrades
or in case of machine failure. While for large-scale or mission-critical systems this
may not be acceptable, for many smaller-scale applications this kind of limited
downtime is a reasonable trade-off for the reduced complexity. If this is not true for
you, feel free to skip this section and either import existing services as described in
the previous section, or move on to Kubernetes-native StatefulSets, described in
the following section. For everyone else, we’ll review how to build reliable
singletons for data storage.

Running a MySQL Singleton

In this section, we’ll describe how to run a reliable singleton instance of the MySQL
database as a Pod in Kubernetes, and how to expose that singleton to other
applications in the cluster.

To do this, we are going to create three basic objects:

e A persistent volume to manage the lifespan of the on-disk storage independently
from the lifespan of the running MySQL application

e A MySQL Pod that will run the MySQL application

e A service that will expose this Pod to other containers in the cluster

In Chapter 5 we described persistent volumes, but a quick review makes sense. A
persistent volume is a storage location that has a lifetime independent of any Pod or
container. This is very useful in the case of persistent storage solutions where the on-
disk representation of a database should survive even if the containers running the
database application crash, or move to different machines. If the application moves
to a different machine, the volume should move with it, and data should be
preserved. Separating the data storage out as a persistent volume makes this possible.
To begin, we’ll create a persistent volume for our MySQL database to use.

This example uses NFS for maximum portability, but Kubernetes supports many
different persistent volume drive types. For example, there are persistent volume
drivers for all major public cloud providers, as well as many private cloud providers.



To use these solutions, simply replace nfs with the appropriate cloud provider
volume type (e.g., azure, awsElasticBlockStore, or gcePersistentDisk). In all
cases, this change is all you need. Kubernetes knows how to create the appropriate
storage disk in the respective cloud provider. This is a great example of how
Kubernetes simplifies the development of reliable distributed systems.

Here’s the example persistent volume object (Example 13-4).

Example 13-4. nfs-volume.yaml

apiVersion: vi
kind: PersistentVolume
metadata:
name: database
labels:
volume: my-volume
spec:
capacity:
storage: 1Gi
nfs:
server: 192.168.0.1
path: "/exports"

This defines an NFS persistent volume object with 1 GB of storage space.

We can create this persistent volume as usual with:
$ kubectl apply -f nfs-volume.yaml

Now that we have a persistent volume created, we need to claim that persistent

volume for our Pod. We do this with a PersistentVolumeClaim object
(Example 13-5).

Example 13-5. nfs-volume-claim.yaml

kind: PersistentVolumeClaim
apiVersion: vi1
metadata:
name: database
spec:
resources:
requests:
storage: 1Gi
selector:
matchLabels:



volume: my-volume

The selector field uses labels to find the matching volume we defined previously.

This kind of indirection may seem overly complicated, but it has a purpose—it
serves to isolate our Pod definition from our storage definition. You can declare
volumes directly inside a Pod specification, but this locks that Pod specification to a
particular volume provider (e.g., a specific public or private cloud). By using volume
claims, you can keep your Pod specifications cloud-agnostic; simply create different
volumes, specific to the cloud, and use a PersistentVolumeClaim to bind them
together.

Now that we’ve claimed our volume, we can use a ReplicaSet to construct our
singleton Pod. It might seem odd that we are using a ReplicaSet to manage a single
Pod, but it is necessary for reliability. Remember that once scheduled to a machine, a
bare Pod is bound to that machine forever. If the machine fails, then any Pods that
are on that machine that are not being managed by a higher-level controller like a
ReplicaSet vanish along with the machine and are not rescheduled elsewhere.
Consequently, to ensure that our database Pod is rescheduled in the presence of
machine failures, we use the higher-level ReplicaSet controller, with a replica size of
one, to manage our database (Example 13-6).

Example 13-6. mysql-replicaset.yaml

apiVersion: extensions/vibetal
kind: ReplicaSet
metadata:
name: mysql
# labels so that we can bind a Service to this Pod
labels:
app: mysql
spec:
replicas: 1
selector:
matchLabels:
app: mysql
template:
metadata:
labels:
app: mysql
spec:
contailners:
- name: database



image: mysql
resources:
requests:
cpu: 1
memory: 2Gi
env:
# Environment variables are not a best practice for security,
# but we're using them here for brevity in the example.
# See Chapter 11 for better options.
- name: MYSQL_ROOT_PASSWORD
value: some-password-here
livenessProbe:
tcpSocket:
port: 3306
ports:
- containerPort: 3306
volumeMounts:
- name: database
# [var/lib/mysql is where MySQL stores its databases
mountPath: "/var/lib/mysql"
volumes:
- name: database
persistentVolumeClaim:
claimName: database

Once we create the ReplicaSet it will in turn create a Pod running MySQL using
the persistent disk we originally created. The final step is to expose this as a
Kubernetes service (Example 13-7).

Example 13-7. mysql-service.yaml

apiVersion: vi
kind: Service
metadata:

name: mysql
spec:

ports:

- port: 3306

protocol: TCP
selector:

app: mysql

Now we have a reliable singleton MySQL instance running in our cluster and
exposed as a service named mysql, which we can access at the full domain name
mysql.svc.default.cluster.



Similar instructions can be used for a variety of data stores, and if your needs are
simple and you can survive limited downtime in the face of a machine failure or a
need to upgrade the database software, a reliable singleton may be the right approach
to storage for your application.

Dynamic Volume Provisioning

Many clusters also include dynamic volume provisioning. With dynamic volume
provisioning, the cluster operator creates one or more StorageClass objects. Here’s
a default storage class that automatically provisions disk objects on the Microsoft
Azure platform (Example 13-8).

Example 13-8. storageclass.yaml

apiVersion: storage.k8s.1o0/vibetal
kind: Storage(Class
metadata:
name: default
annotations:
storageclass.beta.kubernetes.io/is-default-class: "true"
labels:
kubernetes.io/cluster-service: "true"
provisioner: kubernetes.io/azure-disk

Once a storage class has been created for a cluster, you can refer to this storage class
in your persistent volume claim, rather than referring to any specific persistent
volume. When the dynamic provisioner sees this storage claim, it uses the
appropriate volume driver to create the volume and bind it to your persistent volume
claim.

Here’s an example of a PersistentVolumeClaim that uses the default storage
class we just defined to claim a newly created persistent volume (Example 13-9).

Example 13-9. dynamic-volume-claim.yaml

kind: PersistentVolumeClaim
apiVersion: vi
metadata:
name: my-claim
annotations:
volume.beta.kubernetes.io/storage-class: default
spec:
accessModes:
- ReadWriteOnce



resources:
requests:
storage: 10Gi

The volume.beta.kubernetes.io/storage-class annotation is what links this
claim back up to the storage class we created.

Persistent volumes are great for traditional applications that require storage, but if
you need to develop high-availability, scalable storage in a Kubernetes-native
fashion, the newly released StatefulSet object can be used. With this in mind, we’ll
describe how to deploy MongoDB using StatefulSets in the next section.

Kubernetes-Native Storage with StatefulSets

When Kubernetes was first developed, there was a heavy emphasis on homogeneity
for all replicas in a replicated set. In this design, no replica had an individual identity
or configuration. It was up to the individual application developer to determine a
design that could establish this identity for the application.

While this approach provides a great deal of isolation for the orchestration system, it
also makes it quite difficult to develop stateful applications. After significant input
from the community and a great deal of experimentation with various existing
stateful applications, StatefulSets were introduced into Kubernetes in version 1.5.

NOTE

Because StatefulSets are a beta feature, it’s possible that the API will change before it
becomes an official Kubernetes API. The StatefulSet API has had a lot of input and is
generally considered fairly stable, but the beta status should be considered before taking
on StatefulSets. In many cases the previously outlined patterns for stateful applications
may serve you better in the near term.

Properties of StatefulSets

StatefulSets are replicated groups of Pods similar to ReplicaSets, but unlike a
ReplicaSet, they have certain unique properties:

e Each replica gets a persistent hostname with a unique index (e.g., database-0,
database-1, etc.).



e Each replica is created in order from lowest to highest index, and creation will
block until the Pod at the previous index is healthy and available. This also
applies to scaling up.

e When deleted, each replica will be deleted in order from highest to lowest. This
also applies to scaling down the number of replicas.

Manually Replicated MongoDB with StatefulSets

In this section, we’ll deploy a replicated MongoDB cluster. For now, the replication
setup itself will be done manually to give you a feel for how StatefulSets work.
Eventually we will automate this setup as well.

To start, we’ll create a replicated set of three MongoDB Pods using a StatefulSet
object (Example 13-10).

Example 13-10. mongo-simple.yaml

apiVersion: apps/vilbetal
kind: StatefulSet
metadata:

name: mongo
spec:

serviceName: "mongo"

replicas: 3

template:

metadata:

labels:
app: mongo

spec:

containers:

- name: mongodb
image: mongo:3.4.1
command:

- mongod

- --replSet

- rsoO

ports:

- containerPort: 27017
name: peer

As you can see, the definition is similar to the ReplicaSet definition from previous
sections. The only changes are the apiVersion and kind fields. Create the



StatefulSet:
$ kubectl apply -f mongo-simple.yaml

Once created, the differences between a ReplicaSet and a StatefulSet become
apparent. Run kubectl get pods and you will likely see:

NAME READY STATUS RESTARTS AGE
mongo-0 1/1 Running 0 im
mongo-1 0/1 ContainerCreating 0 10s

There are two important differences between this and what you would see with a
ReplicaSet. The first is that each replicated Pod has a numeric index (0, 1, ...),
instead of the random suffix that is added by the ReplicaSet controller. The second is
that the Pods are being slowly created in order, not all at once as they would be with
a ReplicaSet.

Once the StatefulSet is created, we also need to create a “headless” service to
manage the DNS entries for the StatefulSet. In Kubernetes a service is called
“headless” if it doesn’t have a cluster virtual IP address. Since with StatefulSets each
Pod has a unique identity, it doesn’t really make sense to have a load-balancing IP
address for the replicated service. You can create a headless service using

clusterIP: None in the service specification (Example 13-11).

Example 13-11. mongo-service.yaml

apiVersion: vi1
kind: Service
metadata:
name: mongo
spec:
ports:
- port: 27017
name: peer
clusterIP: None
selector:
app: mongo

Once you create that service, there are usually four DNS entries that are populated.

As usual, mongo.default.svc.cluster.local is created, but unlike with a
standard service, doing a DNS lookup on this hostname provides all the addresses in



the StatefulSet. In addition, entries are created for mongo-

® .mongo .default .svc .cluster.local as well as mongo-1.mongo and
mongo-2.mongo. Each of these resolves to the specific IP address of the replica index
in the StatefulSet. Thus, with StatefulSets you get well-defined, persistent names for
each replica in the set. This is often very useful when you are configuring a
replicated storage solution. You can see these DNS entries in action by running
commands in one of the Mongo replicas:

$ kubectl exec mongo-0 bash ping mongo-1.mongo

Next, we’re going to manually set up Mongo replication using these per-Pod
hostnames.

We’ll choose mongo-0.mongo to be our initial primary. Run the mongo tool in that
Pod:

$ kubectl exec -it mongo-0 mongo
> rs.initiate( {

_id: "rso",

members:[ { _id: 0, host: "mongo-0.mongo:27017" } ]
s

0K

This command tells mongodb to initiate the ReplicaSet rs® with mongo-0.mongo as
the primary replica.

NOTE

The rs0 name is arbitrary. You can use whatever you’d like, but you’ll need to change it
in the mongo.yaml StatefulSet definition as well.

Once you have initiated the Mongo ReplicaSet, you can add the remaining replicas
by running the following commands in the mongo tool on the mongo-0.mongo Pod:

$ kubectl exec -it mongo-0 mongo
> rs.add("mongo-1.mongo:27017");
> rs.add("mongo-2.mongo:27017");



As you can see, we are using the replica-specific DNS names to add them as replicas
in our Mongo cluster. At this point, we’re done. Our replicated MongoDB is up and
running. But it’s really not as automated as we’d like it to be. In the next section,
we’ll see how to use scripts to automate the setup.

Automating MongoDB Cluster Creation

To automate the deployment of our StatefulSet-based MongoDB cluster, we’re going
to add an additional container to our Pods to perform the initialization.

To configure this Pod without having to build a new Docker image, we’re going to
use a ConfigMap to add a script into the existing MongoDB image. Here’s the
container we’re adding:

- name: init-mongo
image: mongo:3.4.1
command:

- bash
- /config/init.sh
volumeMounts:
- name: config
mountPath: /config
volumes:

- name: config

configMap:
name: "mongo-init"

Note that it is mounting a ConfigMap volume whose name is mongo-init. This
ConfigMap holds a script that performs our initialization. First, the script determines
whether it is running on mongo-0 or not. If it is on mongo-0, it creates the ReplicaSet
using the same command we ran imperatively previously. If it is on a different
Mongo replica, it waits until the ReplicaSet exists, and then it registers itself as a
member of that ReplicaSet.

Example 13-12 has the complete ConfigMap object.
Example 13-12. mongo-configmap.yaml

apiVersion: vi
kind: ConfigMap
metadata:



name: mongo-init

data:

do

init.sh: |

#!/bin/bash

# Need to wait for the readiness health check to pass so that the
# mongo names resolve. This is kind of wonky.
until ping -c 1 ${HOSTNAME}.mongo; do
echo "waiting for DNS (${HOSTNAME}.mongo)..."
sleep 2
done

until /usr/bin/mongo --eval 'printjson(db.serverStatus())'; do
echo "connecting to local mongo..."
sleep 2

done

echo "connected to local."

HOST=mongo-0.mongo:27017
until /usr/bin/mongo --host=${HOST} --eval 'printjson(db.serverStatus())';

echo "connecting to remote mongo..."
sleep 2

done

echo "connected to remote."

if [[ "S{HOSTNAME}" !'= 'mongo-0' ]]; then
until /usr/bin/mongo --host=${HOST} --eval="printjson(rs.status())" \
| grep -v "no replset config has been received"; do
echo "waiting for replication set initialization"
sleep 2
done
echo "adding self to mongo-0"
Jusr/bin/mongo --host=${HOST} \
--eval="printjson(rs.add('${HOSTNAME}.mongo"'))"
fi

if [[ "S$S{HOSTNAME}" == 'mongo-0' ]]; then
echo "initializing replica set"
Jusr/bin/mongo --eval="printjson(rs.initiate(\
{'_id': 'rs@', 'members': [{'_id': 0, \
'host': 'mongo-0.mongo:27017'}]1}))"
fi
echo "initialized"



while true; do
sleep 3600
done

NOTE

This script currently sleeps forever after initializing the cluster. Every container in a Pod
has to have the same RestartPolicy. Since we want our main Mongo container to be
restarted, we need to have our initialization container run forever too, or else Kubernetes
might think our Mongo Pod is unhealthy.

Putting it all together, here is the complete StatefulSet that uses the ConfigMap in
Example 13-13.

Example 13-13. mongo.yaml

apiVersion: apps/vibetal
kind: StatefulSet
metadata:

name: mongo
spec:

serviceName: "mongo"

replicas: 3

template:

metadata:

labels:
app: mongo

spec:

containers:

- name: mongodb
image: mongo:3.4.1
command:

- mongod

- --replSet

- rso

ports:

- containerPort: 27017
name: web

# This container initializes the mongodb server, then sleeps.

- name: init-mongo
image: mongo:3.4.1
command:

- bash



- [/config/init.sh
volumeMounts:
- name: config
mountPath: /config
volumes:
- name: config
configMap:
name: "mongo-init"

Given all of these files, you can create a Mongo cluster with:

$ kubectl apply -f mongo-config-map.yaml
$ kubectl apply -f mongo-service.yaml
$ kubectl apply -f mongo.yaml

Or if you want, you can combine them all into a single YAML file where the

individual objects are separated by - - -. Ensure that you keep the same ordering,
since the StatefulSet definition relies on the ConfigMap definition existing.

Persistent Volumes and StatefulSets

For persistent storage, you need to mount a persistent volume into the /data/db
directory. In the Pod template, you need to update it to mount a persistent volume
claim to that directory:

volumeMounts:
- name: database
mountPath: /data/db

While this approach is similar to the one we saw with reliable singletons, because the
StatefulSet replicates more than one Pod you cannot simply reference a persistent
volume claim. Instead, you need to add a persistent volume claim template. You can
think of the claim template as being identical to the Pod template, but instead of
creating Pods, it creates volume claims. You need to add the following onto the
bottom of your StatefulSet definition:

volumeClaimTemplates:
- metadata:
name: database
annotations:



volume.alpha.kubernetes.io/storage-class: anything
spec:
accessModes: [ "ReadWriteOnce" ]
resources:
requests:
storage: 100Gi

When you add a volume claim template to a StatefulSet definition, each time the
StatefulSet controller creates a Pod that is part of the StatefulSet it will create a
persistent volume claim based on this template as part of that Pod.

NOTE

In order for these replicated persistent volumes to work correctly, you either need to
have autoprovisioning set up for persistent volumes, or you need to prepopulate a
collection of persistent volume objects for the StatefulSet controller to draw from. If
there are no claims that can be created, the StatefulSet controller will not be able to
create the corresponding Pods.

One Final Thing: Readiness Probes

The final piece in productionizing our MongoDB cluster is to add liveness checks to
our Mongo-serving containers. As we learned in “Health Checks”, the liveness probe
1s used to determine if a container is operating correctly. For the liveness checks, we

can use the mongo tool itself by adding the following to the Pod template in the
StatefulSet object:

livenessProbe:
exec:
command:
- /usr/bin/mongo
- --eval
- db.serverStatus()
initialDelaySeconds: 10
timeoutSeconds: 10

Summary



Once we have combined StatefulSets, persistent volume claims, and liveness
probing, we have a hardened, scalable cloud-native MongoDB installation running
on Kubernetes. While this example dealt with MongoDB, the steps for creating
StatefulSets to manage other storage solutions are quite similar and similar patterns
can be followed.



Chapter 14. Deploying Real-
World Applications

The previous chapters described a variety of API objects that are available in a
Kubernetes cluster and ways in which those objects can best be used to construct
reliable distributed systems. However, none of the preceding chapters really
discussed how you might use the objects in practice to deploy a complete, real-world
application. That is the focus of this chapter.

We’ll take a look at three real-world applications:
e Parse, an open source API server for mobile applications
¢ Ghost, a blogging and content management platform

e Redis, a lightweight, performant key/value store

These complete examples should give you a better idea of how to structure your own
deployments using Kubernetes.

Parse

The Parse server is a cloud API dedicated to providing easy-to-use storage for
mobile applications. It provides a variety of different client libraries that make it easy
to integrate with Android, 10S, and other mobile platforms. Parse was purchased by
Facebook in 2013 and subsequently shut down. Fortunately for us, a compatible
server was open sourced by the core Parse team and is available for us to use. This
section describes how to set up Parse in Kubernetes.

Prerequisites

Parse uses MongoDB cluster for its storage. Chapter 13 described how to set up a
replicated MongoDB using Kubernetes StatefulSets. This section assumes you
have a three-replica Mongo cluster running in Kubernetes with the names mongo -
0.mongo, mongo-1.mongo, and mongo-2.mongo.


https://parse.com

These instructions also assume that you have a Docker login; if you don’t have one,
you can get one for free at https://docker.com.

Finally, we assume you have a Kubernetes cluster deployed and the kubect1 tool
properly configured.

Building the parse-server

The open source parse-server comes with a Dockerfile by default, for easy
containerization. First, clone the Parse repository:

$ git clone https://github.com/ParsePlatform/parse-server
Then move into that directory and build the image:

$ cd parse-server
$ docker build -t ${DOCKER_USER}/parse-server .

Finally, push that image up to the Docker hub:

$ docker push ${DOCKER_USER}/parse-server

Deploying the parse-server

Once you have the container image built, deploying the parse-server into your
cluster is fairly straightforward. Parse looks for three environment variables when
being configured:

APPLICATION_ID

An identifier for authorizing your application

MASTER_KEY

An identifier that authorizes the master (root) user

DATABASE_URI
The URI for your MongoDB cluster

Putting this all together, you can deploy Parse as a Kubernetes Deployment using the
YAML file in Example 14-1.


https://docker.com

Example 14-1. parse.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
name: parse-server
namespace: default
spec:
replicas: 1
template:
metadata:
labels:
run: parse-server
spec:
containers:
- name: parse-server
image: ${DOCKER_USER}/parse-server
env:
- name: DATABASE_URI
value: "mongodb://mongo-0.mongo:27017,\
mongo-1.mongo:27017 ,mongo-2.mongo\
127017 /dev?replicaSet=rs0"
- name: APP_ID
value: my-app-id
- name: MASTER_KEY
value: my-master-key

Testing Parse

To test your deployment, you need to expose it as a Kubernetes service. You can do
that using the service definition in Example 14-2.

Example 14-2. parse-service.yaml

apiVersion: vi1
kind: Service
metadata:

name: parse-server

namespace: default

spec:

ports:

- port: 1337
protocol: TCP
targetPort: 1337

selector:
run: parse-server



Now your Parse server is up and running and ready to receive requests from your
mobile applications. Of course, in any real application you are likely going to want
to secure the connection with HTTPS. You can see the parse-server GitHub page
for more details on such a configuration.

Ghost

Ghost is a popular blogging engine with a clean interface written in JavaScript. It can
either use a file-based SQLite database or MySQL for storage.

Configuring Ghost

Ghost is configured with a simple JavaScript file that describes the server. We will
store this file as a configuration map. A simple development configuration for Ghost
looks like Example 14-3.

Example 14-3. ghost-config.js

var path = require('path'),
config;

config = {
development: {

url: 'http://localhost:2368',

database: {
client: 'sqlite3',
connection: {

filename: path.join(process.env.GHOST_CONTENT,
' /data/ghost-dev.db')

}s
debug: false
}s
server: {
host: '0.0.0.0',
port: '2368'
}s
paths: {
contentPath: path.join(process.env.GHOST_CONTENT, '/')
}

};

module.exports = config;


https://github.com/parse-community/parse-server

Once you have this configuration file saved to config.js, you can create a Kubernetes
ConfigMap object using:

$ kubectl apply cm --from-file ghost-config.js ghost-config

This creates a ConfigMap that is named ghost-config. As with the Parse example,
we will mount this configuration file as a volume inside of our container. We will

deploy Ghost as a Deployment object, which defines this volume mount as part of
the Pod template (Example 14-4).

Example 14-4. ghost.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
name: ghost
spec:
replicas: 1
selector:
matchLabels:
run: ghost
template:
metadata:
labels:
run: ghost
spec:
contailners:
- image: ghost
name: ghost
command:
- sh
- -C
- cp /ghost-config/config.js /var/lib/ghost/config.js
&& /entrypoint.sh npm start
volumeMounts:
- mountPath: /ghost-config
name: config
volumes:
- name: config
configMap:
defaultMode: 420
name: ghost-config

One thing to note here is that we are copying the config.js file from a different



location into the location where Ghost expects to find it, since the ConfigMap can
only mount directories, not individual files. Ghost expects other files that are not in
that ConfigMap to be present in its directory, and thus we cannot simply mount the
entire ConfigMap into /var/lib/ghost.

You can run this with:
$ kubectl apply -f ghost.yaml

Once the pod is up and running, you can expose it as a service with:
$ kubectl expose deployments ghost --port=2368

Once the service is exposed, you can use the kubectl proxy command to access the
Ghost server:

$ kubectl proxy

Then visit http://localhost:8001/api/v1/namespaces/default/services/ghost/proxy/ in
your web browser to begin interacting with Ghost.

Ghost + MySQL

Of course, this example isn’t very scalable, or even reliable, since the contents of the
blog are stored in a local file inside the container. A more scalable approach is to
store the blog’s data in a MySQL database.

To do this, first modify config.js to include:

database: {
client: 'mysql',
connection: {

host : 'mysql',
user : 'root',
password : 'root',
database : 'ghost_db',
charset : 'utfs8'


http://localhost:8001/api/v1/namespaces/default/services/ghost/proxy/

Next, create a new ghost-config ConfigMap object:
$ kubectl create configmap ghost-config-mysql --from-file config.js
Then update the Ghost deployment to change the name of the ConfigMap mounted

from config-map to config-map-mysql:

- configMap:
name: ghost-config-mysql

Using the instructions from “Kubernetes-Native Storage with StatefulSets™, deploy a
MySQL server in your Kubernetes cluster. Make sure that it has a service named
mysql defined as well.

You will need to create the database in the MySQL database:

$ kubectl exec -it mysql-zzmlw -- mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> create database ghost_db;

Finally, perform a rollout to deploy this new configuration.
$ kubectl apply -f ghost.yaml

Because your Ghost server is now decoupled from its database, you can scale up
your Ghost server and it will continue to share the data across all replicas.

Edit ghost.yaml to set spec.replicas to 3, then run:
$ kubectl apply -f ghost.yaml

Your ghost installation is now scaled up to three replicas.



Redis

Redis is a popular in-memory key/value store, with numerous additional features.
It’s an interesting application to deploy because it is a good example of the value of
the Kubernetes Pod abstraction. This is because a reliable Redis installation actually
1s two programs working together. The first is redis-server, which implements the
key/value store, and the other is redis-sentinel, which implements health
checking and failover for a replicated Redis cluster.

When Redis is deployed in a replicated manner, there is a single master server that
can be used for both read and write operations. Additionally, there are other replica
servers that duplicate the data written to the master and can be used for load-
balancing read operations. Any of these replicas can fail over to become the master if
the original master fails. This failover is performed by the Redis sentinel. In our
deployment, both a Redis server and a Redis sentinel are colocated in the same file.

Configuring Redis

As before, we’re going to use Kubernetes ConfigMaps to configure our Redis
installation. Redis needs separate configurations for the master and slave replicas. To
configure the master, create a file named master.conf that contains the code in
Example 14-5.

Example 14-5. master.conf

bind 0.0.0.0
port 6379

dir /redis-data

This directs Redis to bind to all network interfaces on port 6379 (the default Redis
port) and store its files in the /redis-data directory.

The slave configuration is identical, but it adds a single slaveof directive. Create a
file named slave.conf that contains what’s in Example 14-6.

Example 14-6. slave.conf

bind 0.0.0.0
port 6379

dir .



slaveof redis-0.redis 6379

Notice that we are using redis-0.redis for the name of the master. We will set up
this name using a service and a StatefulSet.

We also need a configuration for the Redis sentinel. Create a file named sentinel.conf
with the contents of Example 14-7.

Example 14-7. sentinel.conf

bind 0.0.0.0
port 26379

sentinel monitor redis redis-0.redis 6379 2
sentinel parallel-syncs redis 1

sentinel down-after-milliseconds redis 10000
sentinel failover-timeout redis 20000

Now that we have all of our configuration files, we need to create a couple of simple
wrapper scripts to use in our StatefulSet deployment.

The first script simply looks at the hostname for the Pod and determines whether this
1s the master or a slave, and launches Redis with the appropriate configuration.
Create a file named init.sh containing the code in Example 14-8.

Example 14-8. init.sh

#!/bin/bash
if [[ ${HOSTNAME} == 'redis-0' ]]; then
redis-server /redis-config/master.conf
else
redis-server /redis-config/slave.conf
fi

The other script is for the sentinel. In this case it is necessary because we need to
wait for the redis-0.redis DNS name to become available. Create a script named
sentinel.sh containing the code in Example 14-9.

Example 14-9. sentinel.sh

#!/bin/bash

while ! ping -c 1 redis-0.redis; do
echo 'Waiting for server'
sleep 1

done

redis-sentinel /redis-config/sentinel.conf



Now we need to package all of these files up into a ConfigMap object. You can do
this with a single command line:

$ kubectl create configmap \
--from-file=slave.conf=. /slave.conf \
--from-file=master.conf=. /master.conf \
--from-file=sentinel.conf=. /sentinel.conf \
--from-file=init.sh=./init.sh \
--from-file=sentinel.sh=./sentinel.sh \
redis-config

Creating a Redis Service

The next step in deploying Redis is to create a Kubernetes service that will provide

naming and discovery for the Redis replicas (e.g., redis-0.redis). To do this, we
create a service without a cluster IP address (Example 14-10).

Example 14-10. redis-service.yaml

apiVersion: vi
kind: Service
metadata:
name: redis
spec:
ports:
- port: 6379
name: peer
clusterIP: None
selector:
app: redis

You can create this service with kubectl apply -f redis-service.yaml. Don’t
worry that the Pods for the service don’t exist yet. Kubernetes doesn’t care; it will
add the right names when the Pods are created.

Deploying Redis

We’re ready to deploy our Redis cluster. To do this we’re going to use a StatefulSet.
We introduced StatefulSets in “Manually Replicated MongoDB with StatefulSets”,
when we discussed our MongoDB installation. StatefulSets provide indexing (e.g.,

redis-0.redis) as well as ordered creation and deletion semantics (redis-0 will
always be created before redis-1, and so on). They’re quite useful for stateful



applications like Redis, but honestly, they basically look like Kubernetes

Deployments. For our Redis cluster, here’s what the StatefulSet looks like
Example 14-11.

Example 14-11. redis.yaml

apiVersion: apps/vibetal
kind: StatefulSet
metadata:
name: redis
spec:
replicas: 3
serviceName: redis
template:
metadata:

labels:
app: redis

spec:

containers:

- command: [sh, -c, source /redis-config/init.sh ]
image: redis:3.2.7-alpine
name: redis
ports:

- containerPort: 6379
name: redis

volumeMounts:

- mountPath: /redis-config
name: config

- mountPath: /redis-data
name: data

- command: [sh, -c, source /redis-config/sentinel.sh]
image: redis:3.2.7-alpine
name: sentinel
volumeMounts:

- mountPath: /redis-config
name: config

volumes:

- configMap:

defaultMode: 420
name: redis-config
name: config

- emptyDir:
name: data

You can see that there are two containers in this Pod. One runs the init.sh script that
we created and the main Redis server, and the other is the sentinel that monitors the



SCrvers.

You can also note that there are two volumes defined in the Pod. One is the volume
that uses our ConfigMap to configure the two Redis applications, and the other 1s a
simple emptyDir volume that is mapped into the Redis server container to hold the
application data so that it survives a container restart. For a more reliable Redis
installation this could be a network-attached disk, as discussed in Chapter 13.

Now that we’ve defined our Redis cluster, we can create it using:

$ kubectl apply -f redis.yaml

Playing with Our Redis Cluster

To demonstrate that we’ve actually successfully created a Redis cluster, we can
perform some tests.

First, we can determine which server the Redis sentinel believes is the master. To do
this, we can run the redis-cli command in one of the pods:

$ kubectl exec redis-2 -c redis \
-- redis-cli -p 26379 sentinel get-master-addr-by-name redis

This should print out the IP address of the redis-0 pod. You can confirm this using
kubectl get pods -o wide.

Next, we’ll confirm that the replication is actually working.

To do this, first try to read the value foo from one of the replicas:
$ kubectl exec redis-2 -c redis -- redis-cli -p 6379 get foo

You should see no data in the response.

Next, try to write that data to a replica:

$ kubectl exec redis-2 -c redis -- redis-cli -p 6379 set foo 10
READONLY You can't write against a read only slave.

You can’t write to a replica, because it’s read-only. Let’s try the same command
against redis-0, which is the master:



$ kubectl exec redis-0 -c redis -- redis-cli -p 6379 set foo 10
OK

Now try the original read from a replica:

$ kubectl exec redis-2 -c redis -- redis-cli -p 6379 get foo
10

This shows that our cluster is set up correctly, and data is replicating between
masters and slaves.

Summary

In the preceding sections we described how to deploy a variety of applications using
assorted Kubernetes concepts. We saw how to put together service-based naming
and discovery to deploy web frontends like Ghost as well as API servers like Parse,
and we saw how Pod abstraction makes it easy to deploy the components that make
up a reliable Redis cluster. Regardless of whether you will actually deploy these
applications to production, the examples demonstrated patterns that you can repeat to
manage your applications using Kubernetes. We hope that seeing the concepts we
described in previous chapters come to life in real-world examples helps you better
understand how to make Kubernetes work for you.



Appendix A. Building a Raspberry
Pi Kubernetes Cluster

While Kubernetes is often experienced through the virtual world of public cloud
computing, where the closest you get to your cluster is a web browser or a terminal,
it can be a very rewarding experience to physically build a Kubernetes cluster on
bare metal. Likewise, nothing compares to physically pulling the power or network
on a node and watching how Kubernetes reacts to heal your application to convince
you of its utility.

Building your own cluster might seem like both a challenging and an expensive
effort, but fortunately it is neither. The ability to purchase low-cost, system-on-chip
computer boards as well as a great deal of work by the community to make
Kubernetes easier to install mean that it is possible to build a small Kubernetes
cluster in a few hours.

In the following instructions, we focus on building a cluster of Raspberry Pi
machines, but with slight adaptations the same instructions could be made to work
with a variety of different single-board machines.

Parts List

The first thing you need to do is assemble the pieces for your cluster. In all of the
examples here, we’ll assume a four-node cluster. You could build a cluster of three
nodes, or even a cluster of a hundred nodes if you wanted to, but four is a pretty
good number.

To start, you’ll need to purchase (or scrounge) the various pieces needed to build the
cluster. Here is the shopping list, with some approximate prices as of the time of
writing:

1. Four Raspberry Pi 3 boards (Raspberry Pi 2 will also work)—$160
2. Four SDHC memory cards, at least 8 GB (buy high-quality ones!)—$30-50
3. Four 12-inch Cat. 6 Ethernet cables—$10



Four 12-inch USB A—Micro USB cables—$10
One 5-port 10/100 Fast Ethernet switch—$10
One 5-port USB charger—$25

NS A

One Raspberry Pi stackable case capable of holding four Pis—$40 (or build your
own)

8. One USB-to-barrel plug for powering the Ethernet switch (optional)—$5

The total for the cluster comes out to be about $300, which you can drop down to
$200 by building a three-node cluster and skipping the case and the USB power
cable for the switch (though the case and the cable really clean up the whole cluster).

One other note on memory cards: do not scrimp here. Low-end memory cards
behave unpredictably and make your cluster really unstable. If you want to save
some money, buy a smaller, high-quality card. High-quality 8 GB cards can be had
for around §7 each online.

Anyway, once you have your parts, you’re ready to move on to building the cluster.

These instructions also assume that you have a device capable of flashing an SDHC
card. If you do not, you will need to purchase a USB — memory card reader/writer.

Flashing Images

The default Raspbian image now supports Docker through the standard install
methods, but to make things even easier, the Hypriot project provides images with
Docker preinstalled.

Visit the Hypriot downloads page and download the latest stable image. Unzip the
image, and you should now have an .img file. The Hypriot project also provides
really excellent documentation for writing this image to your memory card:

¢ macOS
e Windows
e [inux

Write the same image onto each of your memory cards.


http://hypriot.com
http://blog.hypriot.com/downloads/
http://bit.ly/hypriot-docker
http://bit.ly/hypriot-windows
http://bit.ly/hypriot-linux

First Boot: Master

The first thing to do is to boot just your master node. Assemble your cluster, and
decide which is going to be the master node. Insert the memory card, plug the board
into an HDMI output, and plug a keyboard into the USB port.

Next, attach the power to boot the board.

Log in at the prompt using the username pirate and the password hypriot.

The very first thing you should do with your Raspberry Pi (or any new device) is to
change the default password. The default password for every type of install everywhere
is well known by people who will misbehave given a default login to a system. This
makes the internet less safe for everyone. Please change your default passwords!

Setting Up Networking
The next step 1s to set up networking on the master.

First, set up WiFi. This is going to be the link between your cluster and the outside
world. Edit the /boot/device-init.yaml file. Update the WiFi SSID and password to
match your environment. If you ever want to switch networks, this is the file you
need to edit. Once you have edited this, reboot with sudo reboot and validate that
your networking is working.

The next step in networking is to set up a static IP address for your cluster’s internal
network. To do this, edit /etc/network/interfaces.d/eth( to read:

allow-hotplug eth®

iface eth® inet static
address 10.0.0.1
netmask 255.255.255.0
broadcast 10.0.0.255
gateway 10.0.0.1

This sets the main Ethernet interface to have the statically allocated address 10.0.0.1.

Reboot the machine to claim the 10.0.0.1 address.



Next, we’re going to install DHCP on this master so it will allocate addresses to the
worker nodes. Run:

$ apt-get install isc-dhcp-server
Then configure the DHCP server as follows:

# Set a domain name, can basically be anything
option domain-name "cluster.home";

# Use Google DNS by default, you can substitute ISP-supplied values here
option domain-name-servers 8.8.8.8, 8.8.4.4;

# We'll use 10.0.0.X for our subnet
subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.1 10.0.0.10;
option subnet-mask 255.255.255.0;
option broadcast-address 10.0.0.255;
option routers 10.0.0.1;

}
default-lease-time 600;

max-lease-time 7200;
authoritative;

Restart the DHCP server with sudo systemctl restart dhcpd.

Now your machine should be handing out IP addresses. You can test this by hooking
up a second machine to the switch via the Ethernet. This second machine should get
the address 10.0.0.2 from the DHCP server.

Remember to edit the /boot/device-init.yaml file to rename this machine to node-1.

The final step in setting up networking is setting up network address translation
(NAT) so that your nodes can reach the public internet (if you want them to be able
to do so).

Edit /etc/sysctl.conf and set net.ipv4.ip_forward=1 to turn on IP forwarding.
Then edit /etc/rc.local (or the equivalent) and add iptables rules for forwarding

from eth0 to wlan0 (and back):

$ iptables -t nat -A POSTROUTING -o wlan® -j MASQUERADE
$ iptables -A FORWARD -i wlan®@ -o eth® -m state \



--state RELATED,ESTABLISHED -j ACCEPT
$ iptables -A FORWARD -1 eth® -o wlan® -j ACCEPT

At this point, basic networking setup should be complete. Plug in and power up the
remaining two boards (you should see them assigned the addresses 10.0.0.3 and
10.0.0.4). Edit the /boot/device-init.yaml file on each machine to name them node-2
and node- 3, respectively.

Validate this by first looking at /var/lib/dhcp/dhcpd.leases and then SSH to the nodes
(remember again to change the default password first thing). Validate that the nodes
can connect to the external internet.

Extra credit

There are a couple of extra things in networking that make it easier to manage your
cluster.

The first is to edit /etc/hosts on each machine to map the names to the right
addresses. On each machine, add:

Now you can use those names when connecting to those machines.

The second is to set up passwordless SSH access. To do this, run ssh-keygen and
then copy the SHOME/.ssh/id_rsa.pub file into

/home/pirate/.ssh/authorized_keys on node-1, node-2, and node- 3.

Installing Kubernetes

At this point you should have all nodes up, with IP addresses and capable of
accessing the internet. Now it’s time to install Kubernetes on all of the nodes.

Using SSH, run the following commands on all nodes to the kubelet and kubeadm

tools. You will need to be root for the following commands. Use sudo su to elevate
to the root user.



First, add the encryption key for the packages:

# curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add

Then add the repository to your list of repositories:

# echo "deb http://apt.kubernetes.io/ kubernetes-xenial main" \
>> [etc/apt/sources.list.d/kubernetes.list

Finally, update and install the Kubernetes tools. This will also update all packages on
your system for good measure:

# apt-get update
$ apt-get upgrade
$ apt-get install -y kubelet kubeadm kubectl kubernetes-cni

Setting Up the Cluster
On the master node (the one running DHCP and connected to the internet), run:

$ kubeadm init --pod-network-cidr 10.244.0.0/16 \
--api-advertise-addresses 10.0.0.1

Note that you are advertising your internal-facing IP address, not your external
address.

Eventually, this will print out a command for joining nodes to your cluster. It will
look something like:

$ kubeadm join --token=<token> 10.0.0.1

SSH onto each of the worker nodes in your cluster and run that command.

When all of that is done, you should be able to run and see your working cluster:
$ kubectl get nodes

Setting up cluster networking

You have your node-level networking setup, but you need to set up the pod-to-pod



networking. Since all of the nodes in your cluster are running on the same physical
Ethernet network, you can simply set up the correct routing rules in the host kernels.

The easiest way to manage this is to use the Flannel tool created by CoreOS. Flannel

supports a number of different routing modes; we will use the host-gw mode. You
can download an example configuration from the Flannel project page:

$ curl https://rawgit.com/coreos/flannel/master/Documentation/kube-flannel.yml

\
> kube-flannel.yaml

The default configuration that CoreOS supplies uses vxlan mode instead, and also
uses the AMD64 architecture instead of ARM. To fix this, open up that

configuration file in your favorite editor; replace vxlan with host-gw and replace all
instances of amd64 with arm.

You can also do this with the sed tool in place:

$ curl https://rawgit.com/coreos/flannel/master/Documentation/kube-flannel.yml

\
| sed "s/amd64/arm/g" | sed "s/vxlan/host-gw/g" \
> kube-flannel.yaml

Once you have your updated kube-flannel.yaml file, you can create the Flannel
networking setup with:

$ kubectl apply -f kube-flannel.yaml

This will create two objects, a ConfigMap used to configure Flannel and a
DaemonSet that runs the actual Flannel daemon. You can inspect these with:

$ kubectl describe --namespace=kube-system configmaps/kube-flannel-cfg
$ kubectl describe --namespace=kube-system daemonsets/kube-flannel-ds

Setting up the GUI

Kubernetes ships with a rich GUI. You can install it by running:

$ DASHSRC=https://raw.githubusercontent.com/kubernetes/dashboard/master/
$ curl -sSL \


http://bit.ly/2vgBsKU
https://github.com/coreos/flannel

$DASHSRC/src/deploy/kubernetes-dashboard.yaml \
| sed "s/amd64/arm/g" \
| kubectl apply -f -

To access this Ul, you can run kubectl proxy and then point your browser to
http://localhost:8001/ui, where localhost is local to the master node in your cluster.
To view this from your laptop/desktop, you may need to set up an SSH tunnel to the

root node using ssh -L8001:1localhost:8001 <master-ip-address>.

Summary

At this point you should have a working Kubernetes cluster operating on your
Raspberry Pis. This can be great for exploring Kubernetes. Schedule some jobs, open
up the Ul, and try breaking your cluster by rebooting machines or disconnecting the
network.


http://localhost:8001/ui
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