
Setup Guide
This guide was written as a support for the different Kubernetes courses that I'm teaching.
This guide does not intend to show all possible solutions but covers a few options to use
Kubernetes. Other options do exist, but I cannot support them in my courses. For questions:
mail@sandervanvugt.nl

version 2.1, 22 March 2021: changed weave to calico in AiO procedure, minor changes

Setting up Minikube on a Linux virtual machine
Any virtualization platform will do, but these steps are for VMware Fusion/Workstation of
VirtualBox. Installation on MacOS or Windows is also possible, consult the documentation
on the Minikube project website for directions. Do consider that while installing directly on
top of either Mac or Windows, changes are made to the host OS networking, which may
lead to conflicts and which is why I recommend using a dedicated VM instead.

Note: Since nov. 2020 there are problems running nested virtualization in VMware Fusion
12 Pro on Mac OS Big Sur. If you have this configuration, you might want to go for the
procedure for Setting up AiO Kubernetes described next.

WARNING: you cannot copy paste from this document, but will have to type all
commands.

1. Make sure you have either a fully installed Fedora 31, 33 or Ubuntu 20.04 virtual
machine. Other host versions may work but have not been tested yet

a. 8 GB RAM recommended, 4 GB RAM minimal
b. CPU's in the virtual machine have nested virtualization enabled

i. On VMware: select VM > Processors and Memory > Advanced Options
and select both "Enable Hypervisor applications in this virtual
machine" and "Enable IOMMU..."

c. 40 GB disk space recommended, 20 GB minimal
2. Install git, vim and bash completion

a. On Ubuntu: sudo apt install git vim bash-completion
b. On Fedora: sudo dnf install git vim bash-completion

3. As ordinary user with sudo privileges, clone the course Git repository
a. git clone https://github.com/sandervanvugt/kubernetes for Kubernetes in 4

Hours
b. git clone https://github.com/sandervanvugt/ckad for CKAD
c. git clone https://github.com/sandervanvugt/microservices for

Microservices
4. Change into the cloned git repo and run the kube-setup.sh script

a. cd kubernetes
b. ./kube-setup

5. At the end of the script, reboot your virtual machine and run the following:
a. minikube start --memory 4096 --vm-driver=kvm2

6. Once Minikube has started successfully, you'll see a message that it has started. Type
kubectl get all to verify the minikube cluster is up and running

Setting up AiO-Kubernetes
This method is less common but offers the advantage that no nested virtualization is
required. Also it gives nice insight in the workings of Kubernetes.

Notice that this procedure currently only is supported on CentOS 7 with Docker. That does
not mean that it doesn't work on Ubuntu, it just means that I haven't had time yet to figure
it all out and give full support :-)

WARNING: you cannot copy paste from this document, but will have to type all
commands.

1. Install a Centos 7 (NOT 8); minimal installation will do. Theoretically, this works on
Ubuntu as well but I haven't had the time yet to make my scripts Ubuntu compatible
- hopefully soon.

a. 20 GB disk space
b. 4 GB RAM recommended (2 GB minimal)
c. 2 CPU's
d. No Swap
e. One ordinary user with sudo privileges must be present. In this document I'll

assume the username "student". Change this according to your local setup.
2. Install some packages

a. On CentOS: sudo yum install git vim bash-completion wget
3. As ordinary user with sudo privileges, clone the course Git repository

a. git clone https://github.com/sandervanvugt/kubernetes for Kubernetes in 4
Hours

b. git clone https://github.com/sandervanvugt/ckad for CKAD
c. git clone https://github.com/sandervanvugt/microservices for

Microservices
d. git clone https://github.com/sandervanvugt/cka for CKA

4. Run the setup scripts using root privileges (so sudo -i before you start):
a. cd /ckad (or cd /cka) (or whichever GitHub repository you have cloned)
b. ./setup-docker.sh
c. ./setup-kubetools.sh

5. Still from a root shell, install a Kubernetes master node
a. kubeadm init --pod-network-cidr=10.10.0.0/16

6. Everything from this point is done in a user shell. Set up the kubectl client:
a. cd ~
b. mkdir .kube
c. sudo cp -i /etc/kubernetes/admin.conf .kube/config
d. sudo chown student:student .kube/config

7. Set up the Calico networking agent
a. kubectl create -f https://docs.projectcalico.org/manifests/tigera-

operator.yaml

b. wget https://docs.projectcalico.org/manifests/custom-resources.yaml
c. You now need to define the Pod network, which by default is set to

192.168.0.0/24, which in general is a bad idea. I suggest setting it to 10.10.0.0
- make sure this address range is not yet used for something else!

d. sed -i -e s/192.168.0.0/10.10.0.0/g custom-resources.yaml
e. kubectl create -f custom-resources.yaml
f. kubectl get pods -n calico-system: wait until all pods show a state of Ready,

this can take about 5 minutes!
8. By default, user Pods cannot run on the Kubernetes control node. Use the following

command to remove the taint so that you can schedule nodes on it:
kubectl taint nodes --all node-role.kubernetes.io/master-

9. Type kubectl get all to verify the cluster works.

Using Hosted Kubernetes in GCE
Kubernetes is supported by many cloud providers. As I cannot be all-inclusive, but most of
all, as Google has donated Kubernetes to the world, I like to do something back and explain
the procedure on GCE only.

1. From a browser, go to https://cloud.google.com and click Sign in.
2. Click Go to console
3. Select Compute > Kubernetes Engine > Clusters
4. Click Create Cluster
5. Click My first cluster
6. Click Create Now and wait a few minutes - typically not more than 5.
7. Once the cluster appears, click Connect
8. You'll see a command gcloud container ... Click Run in Cloud Shell to run it. This will

deploy a cloud shell machine, which may take one or two minutes.
(NOTE: If you don't see the command, this is what you need to type in a cloud shell:
gcloud containers cluster get-credentials cluster-name --zone us-central1-c --
project your-project-123. Make sure the change the cluster name, project name as
well as the zone to what applies to your environment.

9. Press Enter to run the command, and click Authorize to authorize the cloud shell
10. Type kubectl get all to check that the Kubernetes cluster works.

