Setup Guide

This guide was written as a support for the different Kubernetes courses that I'm teaching.
This guide does not intend to show all possible solutions but covers a few options to use
Kubernetes. Other options do exist, but | cannot support them in my courses. For questions:
mail@sandervanvugt.nl

version 3.0, 20 September 2021: added Ubuntu-only update for Minikube based on Docker.
Phasing out Centos as primary platform.

Setting up Minikube on a Linux virtual machine
Because of ongoing issues with Minikube on MacOS / VMware combination, | have

developed a new procedure that works with Docker containers and is only supported on
Ubuntu 20.04.

WARNING: you cannot copy paste from this document, but will have to type all
commands.

1. Make sure you have either a fully installed Ubuntu 20.04 (virtual) machine.
a. 8 GB RAM recommended, 4 GB RAM minimal
b. 2 CPU cores
c. 20 GB minimal disk space
2. Install git, vim and bash completion
a. On Ubuntu: sudo apt install git vim
3. Asordinary user with sudo privileges, clone the course Git repository
a. git clone https://github.com/sandervanvugt/kubernetes for Kubernetes in 4
Hours
4. Change into the cloned git repo and run the minikube-docker-setup.sh script
a. cd kubernetes
b. ./minikube-docker-setup.sh
5. When you see the message that the script is ready, manually run the following
command:
a. minikube start --memory=4096 --vm-driver=docker
6. Once Minikube has started successfully, you'll see a message that it has started. Type
kubectl get all to verify the minikube cluster is up and running

Setting up AiO-Kubernetes
This method is less common but offers the advantage that no nested virtualization is
required. Also it gives nice insight in the workings of Kubernetes.

Notice that this procedure only is supported on Ubuntu 20.04 workstation and server.
Support for CentOS 7 has been dropped and removed from this guide.

WARNING: you cannot copy paste from this document, but will have to type all
commands.

Install Ubuntu 20.04 workstation or server, meeting the following minimal
requirements
a. 20 GB disk space

b. 4 GB RAM recommended (2 GB minimal)
c. 2CPU's

d. No Swap

e.

One ordinary user with sudo privileges must be present. In this document I'll
assume the username "student". Change this according to your local setup.
Install some packages

a. sudo apt install git vim -y
As ordinary user, clone the course Git repository that is required for the course you

are taking
a. git clone https://github.com/sandervanvugt/kubernetes for Kubernetes in 4
Hours

git clone https://github.com/sandervanvugt/ckad for CKAD
c. gitclone https://github.com/sandervanvugt/microservices for
Microservices
d. git clone https://github.com/sandervanvugt/cka for CKA
Run the setup scripts using root privileges
a. cd /ckad (or cd /cka) (or whichever GitHub repository you have cloned)
b. sudo ./setup-container.sh
c. sudo ./setup-kubetools-ubuntu.sh
Still from a root shell, install a Kubernetes master node
a. sudo kubeadm init --pod-network-cidr=10.10.0.0/16
Everything from this point is done in a user shell. Set up the kubectl client:
a. cd~
b. mkdir .kube
c. sudo cp -i /etc/kubernetes/admin.conf .kube/config
d. sudo chown student:student .kube/config
Set up the Calico networking agent
a. kubectl create -f https://docs.projectcalico.org/manifests/tigera-
operator.yaml
wget https://docs.projectcalico.org/manifests/custom-resources.yaml
c. You now need to define the Pod network, which by default is set to
192.168.0.0/24, which in general is a bad idea. | suggest setting it to 10.10.0.0
- make sure this address range is not yet used for something else!
d. sed-i-es/192.168.0.0/10.10.0.0/g custom-resources.yaml
e. kubectl create -f custom-resources.yaml
f. kubectl get pods -n calico-system: wait until all pods show a state of Ready,
this can take about 5 minutes!
By default, user Pods cannot run on the Kubernetes control node. Use the following
command to remove the taint so that you can schedule nodes on it:
kubectl taint nodes --all node-role.kubernetes.io/master-
Type kubectl get all to verify the cluster works.

Using Hosted Kubernetes in GCE

Kubernetes is supported by many cloud providers. As | cannot be all-inclusive, but most of
all, as Google has donated Kubernetes to the world, | like to do something back and explain
the procedure on GCE only.

LN EWNRE

From a browser, go to https://cloud.google.com and click Sign in.

Click Go to console

Select Compute > Kubernetes Engine > Clusters

Click Create

Select GKE Standard and click Configure

In the upper right corner, select My first cluster

Click Create Now and wait a few minutes - typically not more than 5.

Once the cluster appears, click Connect

You'll see a command gcloud container ... Click Run in Cloud Shell to run it. This will
deploy a cloud shell machine, which may take one or two minutes.

(NOTE: If you don't see the command, this is what you need to type in a cloud shell:
gcloud containers cluster get-credentials cluster-name --zone us-centrall-c --
project your-project-123. Make sure the change the cluster name, project name as
well as the zone to what applies to your environment.

10. Press Enter to run the command, and click Authorize to authorize the cloud shell
11. Type kubectl get all to check that the Kubernetes cluster works.

